
Hybrid Parallelization
of a Large-Scale Heart Model

Dorian Krause1, Mark Potse2, Thomas Dickopf1, Rolf Krause1,
Angelo Auricchio3, and Frits Prinzen2

1 Institute of Computational Science, University of Lugano, Switzerland
{dorian.krause,thomas.dickopf,rolf.krause}@usi.ch

2 Cardiovascular Research Institute, Maastricht University, The Netherlands
mark@potse.nl, frits.prinzen@fys.unimaas.nl

3 Fondazione Cardiocentro Ticino, Lugano, Switzerland
angelo.auricchio@cardiocentro.org

Abstract. The simulation of the electrophysiology of the heart is chal-
lenging due to its multiscale nature requiring the use of high spatial
resolutions. Hence, it is important to efficiently utilize large parallel ma-
chines. In this article, we present a code designed to meet these scal-
ability challenges on contemporary multicore-based massively parallel
architectures. It is based on a well-established model originally designed
for shared-memory systems. To improve scalability and extend support
to distributed-memory architectures, we developed a hybrid OpenMP-
MPI code. The new code shows excellent scalability up to 8448 cores
with both explicit and implicit time discretizations. We present an in-
depth analysis of the advantages of hybrid parallelization for this type
of application.

1 Introduction

The contraction of the heart is a highly tuned mechanism that is organized
by a complex electrical activation system. In each cardiac cell, approximately a
million ion channels, pumps, and exchangers work together by allowing or forcing
specific ions to cross the cell’s inner and outer membranes [5]. They come in
dozens of different types, encoded by different genes. Their permeability/activity
depends on transmembrane voltage, ion concentrations, and time. Together, the
ion channels in a cell membrane generate action potentials: temporary changes
in transmembrane voltage that serve to open calcium channels, allowing a large
amount of calcium to enter the cell, bind to the cell’s contractile molecules, and
initiate a contraction. Unlike skeletal muscle cells, cardiac muscle cells can trigger
action potentials in their neighbors by passing current through the gap junctions
that connect their interiors. By this mechanism, the entire cardiac muscle can
be activated in less than 100 ms; a prerequisite for an ordered contraction.

Mathematical modeling is essential to understand the dynamics of the in-
teractions between ion channels in the cell membrane [17]. The first numerical
models of cardiac cells date from the 1960s. Since then, the models have grown

2 Dorian Krause et al.

in complexity to capture newly discovered channel types as well as our evolving
understanding of the known channels. In addition, it is now possible to couple
many such models together to simulate entire hearts.

The high spatial and temporal gradients occurring in the propagation of the
action potential require high spatial resolution. The size of whole-heart models
therefore ranges from O(106) nodes for small mammals [24] to O(108) nodes
for an adult human heart [6]. The required sizes could increase by more than an
order of magnitude when muscle diseases are modeled. Consequently, much work
is devoted to improving the performance and scalability of these simulations [1,
7, 15, 16, 25].

In this paper, we report on our work to develop a hybrid OpenMP-MPI
parallelization for an existing heart model in order to optimize strong and weak
scaling, improve performance, and advance the limit of achievable model size.
The paper is organized as follows. In Section 2, we describe the mathematical
models underlying the numerical simulation of the electrophysiology of the heart.
In Section 3, we present the Propag code which is the basis of the work described
in the article. In Section 4, we explain the new hybrid parallelization of Propag.
Finally, in Section 5, we present and analyze our performance results.

2 Mathematical Model

The human heart contains a few billion muscle cells. Gap junctions allow action
potentials to propagate from one cell to another [2, 12]. To model this electro-
physiological system mathematically, it is customary to treat the intracellular
environment with the gap junctions as a continuous domain. Likewise, the extra-
cellular environment, which in reality consists of many different components, is
treated as another continuous domain. These domains and the active membrane
between them can then be discretized with a spatial step size that is much larger
than a single cell. This leads to the bidomain model [4, 19]

∇ · (σi∇φi) = βIm = −∇ · (σe∇φe) (1)

where φi and φe denote the intra- and extracellular potential fields, β is the
membrane surface-to-volume ratio, σi and σe denote the conductivity tensors in
the intra- and extracellular domain, and the transmembrane current density Im

equals

Im = Cm
∂Vm

∂t
+ Iion + Istim , (2)

with Vm = φi − φe and Cm = 1µF/cm2 the membrane capacitance. Here, Iion is
the ionic current; Istim denotes a stimulation current. In this study, we simulated
Iion with the Ten Tusscher-Panfilov 2006 model [23]. Free boundary conditions
are imposed for φe, φi and Vm.

By inserting (2) into (1) and using an operator splitting approach (see also,
for example, Vigmond et al. [25]), we obtain the following bidomain reaction-
diffusion model

∂Vm

∂t
=

1
βCm

[
∇ · (σi∇(Vm + φe))− β (Iion + Istim)

]
(3)

Hybrid Parallelization of a Large-Scale Heart Model 3

∇ · ((σi + σe)∇φe) = −∇ · (σi∇Vm) . (4)

Equation (3) is used to integrate Vm and (4) is used to compute φe from Vm at
each time step.

An important simplification of the bidomain model is possible by assum-
ing that σi is proportional to σe. This allows for lumping the two domains
together in the integration. Introducing the monodomain conductivity tensor
σ′µν = (σiµν σeµν)/(σiµν + σeµν) and eliminating φe from (3) and (4), we obtain
the following monodomain reaction-diffusion model [19]:

∂Vm

∂t
=

1
βCm

[
∇ · (σ′∇Vm)− β (Iion + Istim)

]
. (5)

Especially in whole-heart simulations, a monodomain model approximates a
bidomain model very well [19]. By combining (5) with (4) it is still possible
to compute φe, which is of special importance because, in contrast to Vm, it can
be measured clinically (Figure 1). By solving (4) less frequently, this approach
is much more efficient than a bidomain reaction-diffusion model. Solution tech-
niques for these equations are a subject of continuing research [1, 7, 16, 25].

3 The Propag Code

The purpose of this work was to improve an existing cardiac simulation code,
named Propag, [6, 19, 20], and to study and remove the bottlenecks that pre-
vented it from running efficiently on contemporary massively-parallel computers.

The original code had been developed to solve both mono- and bidomain
models on complicated geometries obtained from CT or MRI images of the
heart. It was designed to run efficiently on shared-memory machines such as
the SGI Altix family, using 16 to 128 cores. Parallelization had therefore been
done with OpenMP directives in a NUMA-aware fashion (taking care of memory
placement). In practice, the existing code could run heart models up to 100 mil-
lion nodes in a reasonable amount of time and with good parallel performance.
Strong scaling had a fixed limit of about 4 · 105 model nodes per core.

3.1 Characterization of the Code

Propag works with semi-structured finite-difference meshes, i.e., many of the
possible node positions are not occupied. The heart or torso anatomy is input as
a Cartesian array storing the cell types (tissue type, blood, or void). We refer to
the elements of this Cartesian box as voxels whereas non-void voxels are called
cells. Based on the cell types of surrounding voxels, the vertices of the mesh
receive types as well. Vertices that are not completely surrounded by void are
referred to as (mesh) nodes. In the original code, connectivity was computed on
the fly. In the new code, the topology is stored explicitly since we cannot control
the shapes of individual subdomains in the domain decomposition.

In this article we focus on the monodomain capabilities of the code. Origi-
nally, the code used an explicit Euler scheme to solve (5), see Algorithm 1.

4 Dorian Krause et al.

Fig. 1. Visualization of model results.
The heart generates a potential field
in the torso (A). Electrocardiograms
(B) and catheter electrograms (C) can
be derived and compared to measured
data as well as to the underlying simu-
lated action potentials (D) and dozens
of other membrane-related variables.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 6 12 24

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Number of Threads

Computation of Iion
Computation of Idif

Euler Step
Computation of Istim

Ideal Scaling

Fig. 2. Scaling of the original Propag
code in a monodomain run with break-
down of runtime.

Algorithm 1 Monodomain Explicit Euler Time Integrator
1: Compute In+1

dif = β−1∇ · (σ′∇V n
m) and In+1

stim

2: Evaluate In+1
ion = ION STEP(V n

m , In+1
dif , In+1

stim)

3: Set V n+1
m = V n

m + τ
ˆ
In+1
dif − In+1

stim − In+1
ion

˜

In monodomain mode, the computation of Iion in ION STEP dominates the
runtime (cf. Figure 2). It consists of a single loop over all mesh nodes and the
approximate solution of a set of ordinary differential equations (about 40 in our
model) at each node and hence is amenable to parallelization.

In Figure 2, an analysis of the runtime of the original Propag is shown.
The graph shows a breakdown of the runtime of a monodomain simulation on
one 24-core node of a Cray XE6 (equipped with two AMD Opteron 2.1 Ghz
“Magny Cours” processors). Due to the NUMA-aware memory allocation and
since runtime is distributed over only few scalable tasks of large granularity, the
OpenMP parallelization is very efficient and OpenMP management overhead
is negligible. The parallel efficiency on 24 cores is 86.9 % for this rather small
example (422,091 mesh nodes).

The reaction-diffusion equation (5) contains a stiff diffusion term. With ex-
plicit time integration schemes, numerical stability requires a time step size that
decreases quadratically with the spatial step size. To enable stable and accu-
rate integration of very large models (with several billion degrees of freedom) we
recently implemented an Implicit-Explicit (IMEX) Euler time discretization in
Propag. Here, the linear diffusion term is treated implicitly while the non-linear
ionic current is treated explicitly. In contrast to an explicit integration scheme,
the IMEX Euler method requires the solution of a linear system in each time

Hybrid Parallelization of a Large-Scale Heart Model 5

step. In our experience, the matrix in this system is well-conditioned for practi-
cal time step sizes so that a few Bi-CGSTAB steps suffice to effectively reduce
the (relative) residual norm to the tolerance ε = 10−8.

4 Hybrid Parallelization

The currently largest shared-memory machines are limited to a few thousand
cores per machine while the largest distributed-memory architectures scale to
hundreds of thousands of cores. To efficiently utilize these resources, we ported
Propag to an MPI code that can run on distributed-memory architectures.
Such systems usually consist of a large number of multi-socket compute nodes
connected by a high-speed interconnect. In recent years, the number of cores per
socket has increased significantly. Within a compute node, memory is shared
between cores, usually with NUMA architecture. Therefore, we retained the
existing OpenMP parallelization, which is efficient for intra-node parallelization,
and added an MPI layer for inter-node parallelism. Such a hybrid parallelization
approach has been used for a variety of codes and has proven beneficial for
several reasons:

1. It simplifies adding new levels of concurrency beyond what is easily accom-
plished with MPI and hence can be used to overcome algorithmic scaling
limitations (e.g., GTC [3]).

2. It allows to mitigate efficiency loss in applications that are limited by the
scaling of all-to-all communication (e.g., PARATEC [18] and CPMD [8]) or
where communication time is a significant part of the runtime.

3. Since the shared memory often renders halo (or overlap) zones unnecessary,
hybrid codes can use less memory. If additional work must be performed on
the halo, scalability can be enhanced by increasing the number of threads
per process (e.g., FISH [10]).

4. It simplifies the load balancing of applications with dynamic or complicated
structure since intra-process load balancing is possible using dynamic or
guided loop scheduling (e.g., NPB BT-MZ Benchmark [21]).

It is worth noting, though, that hybrid parallelization is not always beneficial.
Mahinthakumar and Saied report no improvement in a hybrid implicit finite
element (FE) solver [14]. In general, there are many factors contributing to the
performance of hybrid execution and results can vary between simulation setups,
cf. [13].

4.1 MPI Parallelization

For the MPI parallelization of the code, we exploited techniques that have proven
to be very efficient for the parallelization of general (unstructured) FE applica-
tions. Hence, we use a cell-wise distribution of the geometry. The decomposition
is computed through an interface to existing graph-partitioning libraries (e.g.,
ParMETIS [11]). Differently than previous versions of Propag, all arrays range

6 Dorian Krause et al.

only over cells and nodes and connectivity information is stored explicitly. While
this change has a negative impact on single-core performance and the OpenMP
scalability of the code (due to additional indirect accessing), it is compensated
for by better scalability of the MPI layer.

Since the mesh in Propag is distributed cell-wise, nodes are duplicated on
multiple processes. One of these processes is distinguished as the owner of the
node. For inter-process communication, we use the notion of communication
traces introduced by Sahni et al. [22]. In Propag a communication trace consists
of a set of nodes (located on an inter-process boundary) and the rank of a peer
process. On the peer, a matching communication trace is built with a consistent
ordering of the interface entities. Hence, by means of a communication trace,
inter-process communication is possible without the need for a global numbering
of mesh entities. All communication is based on two primitives: The function
SUMUP AT OWNER gathers data on the owner and COPY TO OTHERS overwrites the
data at each copy by the data at the owner (scatter). These communication
steps are implemented on top of non-blocking MPI send/receive calls and an
extended interface (START, TEST, WAIT) is provided to overlap these operations
with computations.

Using these communication primitives, we can rewrite Algorithm 1 as shown
in Algorithm 2. The algorithm is written in such a way that it allows for over-
lapping communication of the diffusion currents with the computation of Istim

(to hide the communication in SUMUP AT OWNER) and with the evaluation of Iion

for the interior nodes (to hide COPY TO OTHERS), assuming the necessary hard-
ware capabilities. In our tests, we have not seen improvements in scalability or
runtime due to overlap. Nevertheless, by construction, all receive calls are pre-
posted timely before the WAIT call. This is important for good MPI performance
on many systems including the targeted Cray XT5.

Algorithm 2 Parallel Monodomain Explicit Euler
1: Compute locally In+1

dif = β−1∇ · (σ′∇V n
m)

2: Call SUMUP AT OWNER START(In+1
dif)

3: Compute In+1
stim

4: Call SUMUP AT OWNER WAIT(In+1
dif)

5: Call COPY TO OTHERS START(In+1
dif)

6: Evaluate In+1
ion = ION STEP(V n

m , In+1
dif , In+1

stim) for all own nodes

7: Call COPY TO OTHERS WAIT(In+1
dif)

8: Evaluate In+1
ion = ION STEP(V n

m , In+1
dif , In+1

stim) for all other nodes

9: Set V n+1
m = V n

m + τ
ˆ
In+1
dif − In+1

stim − In+1
ion

˜

4.2 MPI Threading Support

The intra-process parallelization via OpenMP was retained and extended to new
code segments. As in the original code, we mostly use parallel for worksharing

Hybrid Parallelization of a Large-Scale Heart Model 7

constructs. This approach (in comparison to the use of large parallel sections)
incurs some overhead but simplifies the implementation. Experiments with the
original code (Figure 2) show that OpenMP overhead does not significantly affect
the scalability of the explicit solver.

All MPI calls in Propag are performed outside the parallel sections. There-
fore, the minimal level of thread support an MPI implementation must provide is
MPI THREAD FUNNELED. As defined by the standard, this level of thread support
suits applications where it is ensured that only the main thread makes MPI calls.
In comparison to higher levels of thread support, this does not incur overhead
due to locks/mutexes in the MPI implementation.

We do not anticipate savings in communication time by having multiple
threads performing communication since the code is limited by latency rather
than bandwidth. Using multiple threads for communication can be advantageous
if a single thread is incapable of saturating the network interface [21].

5 Performance Analysis

All experiments were performed on a Cray XT5 machine operated by the Swiss
National Supercomputing Centre. The system consists of 1844 nodes with two
6-core AMD Opteron 2.6 Ghz “Istanbul” processors per node (22,128 cores in
total4). The nodes are connected through a Seastar 2+ interconnect.

For our experiments, we consider approximations of a model anatomy (based
on CT data of a human heart obtained at autopsy [19]) at different spatial
resolutions. We summarize the description of the four considered problem sizes
(small, medium, large and extra-large) in Table 1.

Table 1. Problem sizes for experiments.

Name Resolution #cubes #nodes

S 0.5 mm 3,024,641 3,200,579

M 0.25 mm 24,197,121 24,900,671

L 0.125 mm 193,576,968 196,390,842

XL 0.0625 mm 1,548,615,744 1,559,870,636

We study strong scaling for the problem sizes S, M, L and XL, varying
both the number of processes and the number of threads per process, the latter
between 1 (one MPI process per core), 6 (one MPI process per socket), and 12
(one MPI process per node). For all setups we start with at least 12 threads. We
measure the average time required to perform ten Explicit Euler or IMEX Euler
steps, respectively. Every tenth step, an MPI ALLREDUCE is performed to sum up
some statistics that have been accumulated locally. For the purpose of our tests,
we do not perform significant I/O. For the IMEX runs, we use the Bi-CGSTAB
solver with a Jacobi preconditioner and a fixed time step size τ = 0.02 ms.
4 Due to an interconnect congestion problem, we could not yet perform tests on more

than 8448 cores.

8 Dorian Krause et al.

12 48 132 528 2112 8448
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of Threads

T
im

e
[s

]

 S

 M X

Ideal
 1 thread/proc
 6 threads/proc
12 threads/proc

12 48 132 528 2112 8448
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of Threads

T
im

e
[s

]

 S

 M
 X XL

Ideal
 1 thread/proc
 6 threads/proc
12 threads/proc

Fig. 3. Scaling of Explicit Euler (left) and IMEX Euler (right) on the Cray XT5.
Problem M requires at least 24 cores for IMEX Euler or Explicit Euler with one thread
per process. X requires at least 132 cores for execution (96 when using 12 threads per
process). The starting point for the strong scaling study for problem XL is 2112 cores.

5.1 Performance of Single-Threaded Execution

In Figure 3, the time per run for the different problem sizes is plotted against
the number of threads (i.e., number of processes times threads per process). The
code scales well up to 8448 cores for the larger problem sizes. In general, the
scaling of the Explicit Euler is much better than the IMEX Euler as the latter
requires multiple MPI ALLREDUCE calls per time step and additional point-to-
point communication for sparse matrix-vector multiplication.

For S on 1056 cores (one thread per process), the IMEX Euler requires ∼
169× more MPI ALLREDUCE calls than Explicit Euler. At this scale, the code
spends 48.0 % of the compute time in the calls to MPI ALLREDUCE (compared to
9.7 % for the Explicit Euler). Hybrid execution can improve this situation, see
Section 5.2. Nevertheless, for this small problem size, the code still achieves an
efficiency of 56.5 % and 21.9 % on 1056 cores using the Explicit Euler and IMEX
Euler, respectively. For larger problems, such as L, the parallel efficiency on 8448
cores relative to 132 cores (the minimum required to run the problem) is 81.6 %
and 53.2 % for Explicit Euler and IMEX Euler, respectively.

The limits in (strong) scalability of Propag can be linked to two major
sources of inefficiency: A relative increase in communication time and a sub-
optimal decrease in the degrees of freedom per process.

In Table 2, we report the relative percentage of the average walltime of com-
munication in the main computational loop as reported by the Integrated Per-
formance Monitor (IPM) [9]. The data show that there is an ∼ 4× increase
in the relative communication time (both point-to-point and collective) when
increasing the number of cores by a factor of 8.

In Table 3 we show the increase in the total number of nodes due to the
overlap between subdomains. Due to the cell-based decomposition, nodes on
inter-process boundaries must be duplicated so that the total number of nodes
(where copies are accounted for) grows with the number of processes. As can be

Hybrid Parallelization of a Large-Scale Heart Model 9

Table 2. Breakdown of communication time for S using Explicit and IMEX integration
with one thread per process.

#cores
% of walltime % of walltime

in point-to-point in collective
communication communication

Explicit Euler

132 4.91% 2.31%

1056 20.10% 10.07%

#cores
% of walltime % of walltime

in point-to-point in collective
communication communication

IMEX Euler

132 13.04% 12.31%

1056 32.57% 48.09%

Table 3. Characteristics of the node distribution during scale-out of M.

#procs 12 24 528 1056 4224 8448

% Increase
1.58 2.33 10.14 13.25 22.55 29.67

in #nodes

seen in Table 3, the number of nodes has grown by almost 30 % on 8448 cores.
Using an argument similar to that of Amdahl’s law, we can derive an upper
bound for the parallel efficiency as the ratio between the total number of nodes
in serial and parallel. In our example, the maximum attainable efficiency when
scaling from 12 to 8448 cores is 78.3 %. A similar finding was reported by Sahni
et al. [22] in the context of an unstructured FE solver.

5.2 Benefits of Hybrid Execution

In Section 5.1, we have identified two major sources of scalability loss in Propag.
In this section, we will analyze how hybrid execution, using multiple threads per
process, allows to mitigate these inefficiencies.

In Table 4, we present a breakdown of the communication time for the prob-
lem size S. The results for runs with one thread per process correspond to the
results in Table 2. Unlike before, Table 4 contains absolute communication times
(for 1010 time steps) to allow for comparing the results from different runs. Our
results show that the use of multiple threads per process can significantly reduce
the communication time. Using 6 or 12 threads per process reduces the time in
MPI ALLREDUCE by 22–52% or up to 61%, respectively. Similarly, TPt2Pt is de-
creased by 22–64 % or 5–72% for 6 or 12 threads. Interestingly though, a smaller
number of processes does not always imply lower communication cost since the
TPt2Pt for 11× 12 threads is larger than for 22× 6 threads. Using more threads
per process leads to larger buffer sizes. This results in an improved bandwidth
utilization but also increased latency.

In Section 5.1, we have noted that a strict upper limit for the parallel ef-
ficiency in Propag exists due to the growth of node copies on inter-process
boundaries. For the intra-process parallelization based on OpenMP worksharing
constructs, no overlap is required. When keeping the total number of threads

10 Dorian Krause et al.

Table 4. Breakdown of communication time for S using Explicit and IMEX Euler.
TPt2Pt and TColl denote point-to-point and collective communication time, respectively.

#cores
procs ×

TPt2Pt TCollthreads/proc

Explicit Euler

132× 1 5.12 s 2.41 s

132 22× 6 3.99 s 1.37 s

11× 12 4.87 s 2.34 s

1056× 1 3.90 s 1.95 s

1056 176× 6 2.43 s 0.95 s

88× 12 2.25 s 0.76 s

#cores
procs ×

TPt2Pt TCollthreads/proc

IMEX Euler

132× 1 35.53 s 33.55 s

132 22× 6 20.86 s 25.89 s

11× 12 12.18 s 14.99 s

1056× 1 38.13 s 56.29 s

1056 176× 6 13.73 s 39.81 s

88× 12 10.52 s 33.46 s

Table 5. Percentage increase in #nodes for M with 1, 6, and 12 threads per process.

#cores
12 24 528 1056 4224 8448

threads

1 1.58 2.33 10.14 13.25 22.55 29.67

6 0.40 0.84 4.82 6.55 11.31 14.87

12 0.00 0.40 3.33 4.82 8.79 11.31

constant, using more threads per process will result in fewer node copies. In Ta-
ble 5, we show that this results in a strong reduction of the number of additional
nodes. Consequently, the theoretical upper bound for the efficiency improves:
When using 12 threads per process, efficiency when going from 12 to 8448 cores is
bounded by 89.8 % (rather than 78.3 %, cf. Section 5.1). We measure an efficiency
of 74% for the Explicit Euler solver which seems to be practically impossible to
achieve with a pure MPI version.

The actual, measured improvement of the hybrid code (running with 6 or
12 threads per process, respectively) is shown in Figure 4. For the case of the
Explicit Euler, threaded execution is beneficial starting at 96 cores. The code on
1056 cores with 6 threads per process shows an unexpectedly bad performance
that we cannot explain yet. For the IMEX Euler, which is more strongly limited
by communication time, execution with 6 threads per process is advantageous
already at 24 cores; execution with 12 threads per process is advantageous for
528 cores or more. When 2112 cores or more are used, running with 12 threads
per process is faster than running with 6 threads per process.

6 Conclusion

We have presented the successful hybrid parallelization of a large-scale heart
model. Performance was measured in monodomain simulations with up to 1.5 bil-
lion nodes. These system sizes are among the largest reported in the literature
for this scientific problem.

Hybrid Parallelization of a Large-Scale Heart Model 11

24 48 96 132 528 2112 8448
−5

0

5

10

15

20

25

Number of Threads

%
 Im

pr
ov

em
en

t r
el

at
iv

e
to

 1
 th

re
ad

/p
ro

c

 6 threads/proc
12 threads/proc

24 48 96 132 528 2112 8448
−10

0

10

20

30

40

50

60

70

Number of Threads

%
 Im

pr
ov

em
en

t r
el

at
iv

e
to

 1
 th

re
ad

/p
ro

c

 6 threads/proc
12 threads/proc

Fig. 4. Improvement through hybrid execution for Explicit (left) and IMEX Euler
(right) relative to pure MPI for M on the Cray XT5.

We have shown that hybrid parallelization can improve scalability of this
application as it 1) decreases the relative and absolute communication time
and 2) reduces the size of the overlap between adjacent subdomains. We have
analyzed both effects separately and have demonstrated runtime reductions up to
24 % for an Explicit Euler and up to 62% for an IMEX Euler time discretization.

Acknowledgments

Computational resources for this work were provided by the Università della
Svizzera italiana (USI), the Swiss National Supercomputing Centre (CSCS),
and the Réseau québécois de calcul de haute performance (RQCHP). This work
was supported by the project “A High Performance Approach to Cardiac Resyn-
chronization Therapy” within the context of the “Iniziativa Ticino in Rete” and
the “Swiss High Performance and Productivity Computing” (HP2C) Initiative.

References

1. R. Bordas, B. Carpentieri, G. Fotia, F. Maggio, R. Nobes, J. Pitt-Francis, and
J. Southern. Simulation of cardiac electrophysiology on next-generation high-
performance computers. Phil. Trans. Roy. Soc. A., 367:1951–1969, 2009.

2. T. Desplantez, E. Dupont, N. J. Severs, and R. Weingart. Gap junction channels
and cardiac impulse propagation. J. Membrane Biol., 218:13–28, 2007. (review).

3. S. Ethier, W. M. Tang, and Z. Lin. Gyrokinetic particle-in-cell simulations of
plasma microturbulence on advanced computing platforms. J. Phys. Conf. Ser.,
16(1):1–15, 2005.

4. C. S. Henriquez. Simulating the electrical behavior of cardiac tissue using the
bidomain model. CRC Crit. Rev. Biomed. Eng., 21:1–77, 1993.

5. B. Hille. Ion Channels of Excitable Membranes. Sinauer Associates, Inc, Sunder-
land, MA, USA, 2001.

12 Dorian Krause et al.

6. M. G. Hoogendijk et al. Mechanism of right precordial ST-segment elevation in
structural heart disease: Excitation failure by current-to-load mismatch. Heart
Rhythm, 7:238–248, 2010.

7. N. Hooke, C. S. Henriquez, P. Lanzkron, and D. Rose. Linear algebraic transfor-
mations of the bidomain equations: Implications for numerical methods. Math.
Biosci., 120(2):127–145, 1994.

8. J. Hutter and A. Curioni. Dual-level parallelism for ab initio molecular dynamics:
Reaching teraflop performance with the CPMD code. Parallel Comput., 31(1):1–
17, 2005.

9. IPM Homepage, 2009. http://ipm-hpc.sourceforge.net/.
10. R. Kaeppeli, S. C. Whitehouse, S. Scheidegger, U. L. Pen, and M. Liebendörfer.

FISH: A 3D parallel MHD code for astrophysical applications. Technical Report
arXiv:0910.2854, 2009.

11. G. Karypis and V. Kumar. A coarse-grain parallel formulation of multilevel k-
way graph partitioning algorithm. In Parallel Processing for Scientific Computing.
SIAM, 1997.

12. A. Kléber and Y. Rudy. Basic mechanisms of cardiac impulse propagation and
associated arrhythmias. Physiol. Rev., 84:431–488, 2004.

13. R. Loft, S. Thomas, and J. Dennis. Terascale spectral element dynamical core
for atmospheric general circulation models. In Supercomputing, ACM/IEEE 2001
Conference, 2001.

14. G. Mahinthakumar and F. Saied. A hybrid MPI-OpenMP implementation of an
implicit finite-element code on parallel architectures. Int. J. High Perform. C.,
16(4):371–393, 2002.

15. L. Mitchell, M. Bishop, E. Hötzl, A. Neic, M. Liebmann, G. Haase, and G. Plank.
Modeling cardiac electrophysiology at the organ level in the peta flops computing
age. AIP Conference Proceedings, 1281(1):407–410, 2010.

16. S. Niederer, L. Mitchell, N. Smith, and G. Plank. Simulating a human heart beat
with near-real time performance. Front. Physio., 2:14, 2011.

17. D. Noble and Y. Rudy. Models of cardiac ventricular action potentials: Iterative
interaction between experiment and simulation. Phil. Trans. Roy. Soc. London;
Phys. Sc., 359:1127–1142, 2001.

18. PARAllel Total Energy Code. http://www.nersc.gov/projects/paratec.
19. M. Potse, B. Dubé, J. Richer, A. Vinet, and R. M. Gulrajani. A comparison of mon-

odomain and bidomain reaction-diffusion models for action potential propagation
in the human heart. IEEE Trans. Biomed. Eng., 53:2425–2435, 2006.

20. M. Potse, B. Dubé, and A. Vinet. Cardiac anisotropy in boundary-element models
for the electrocardiogram. Med. Biol. Eng. Comput., 47:719–729, 2009.

21. R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP parallel program-
ming on clusters of multi-core SMP nodes. In 17th Euromicro International Confer-
ence on Parallel, Distributed and Network-based Processing, pages 427–436, 2009.

22. O. Sahni, M. Zhou, M. S. Shephard, and K. E. Jansen. Scalable implicit finite
element solver for massively parallel processing with demonstration to 160k cores.
In Supercomputing, ACM/IEEE 2009 Conference, 2009.

23. K. H. ten Tusscher and A. V. Panfilov. Alternans and spiral breakup in a human
ventricular tissue model. Am. J. Physiol., 291(3):H1088–1100, 2006.

24. N. Trayanova and F. Aguel. Computer simulations of cardiac defibrillation: A look
inside the heart. Comput. Vis. Sci., 4:259–270, 2002.

25. E. J. Vigmond, F. Aguel, and N. A. Trayanova. Computational techniques for
solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng.,
49:1260–1269, 2002.

