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Abstract The boundary-element method (BEM) is widely used for electrocardio-

gram (ECG) simulation. Its major disadvantage is its perceived inability to deal

with the anisotropic electric conductivity of the myocardial interstitium, which

led researchers to represent only intracellular anisotropy or neglect anisotropy al-

together. We computed ECGs with a BEM model based on dipole sources that

accounted for a “compound” anisotropy ratio. The ECGs were compared with

those computed by a finite-difference model, in which intracellular and interstitial

anisotropy could be represented without compromise. For a given set of conduc-

tivities, we always found a compound anisotropy value that led to acceptable dif-

ferences between BEM and finite-difference results. In contrast, a fully isotropic

model produced unacceptably large differences. A model that accounted only for

intracellular anisotropy showed intermediate performance. We conclude that using

a compound anisotropy ratio allows BEM-based ECG models to more accurately

represent both anisotropies.

Keywords myocardial anisotropy· boundary-element methods· finite-difference

model· electrocardiogram· computer model
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1 Introduction

The electrocardiogram (ECG) is arguably the most importantdiagnostic tool in

cardiology. Although it has been around for more than a century, many aspects of

the ECG are still poorly understood. Computer models of the ECG play an impor-

tant role in filling these knowledge gaps. Whole-heart reaction-diffusion models,

which can simulate the ECG directly from processes on the membrane level, have

only just begun to appear [21, 24, 25, 51]. These models, combined with patient-

specific anatomic models, can predict subtle electrocardiographic effects of ion-

channel malfunctions, provided that the ECG simulation is accurate enough.

The boundary-element method (BEM) has been used for ECG simulation for

more than four decades [1, 3, 9, 16, 19, 21, 28, 32, 47, 55]. Itsattractiveness comes

from the small number of surface elements necessary to describe the torso and

its major inhomogeneities. The torso, skeletal muscle layer, lungs, and ventricu-

lar blood masses can be modeled with a few thousand triangles[16]. Originally

the small footprint of the BEM model made it the only candidate for ECG sim-

ulation [16, 19, 32]. The continuing popularity of the method is mainly due to

its speed, which makes it useful for low-end computers and interactive applica-

tions [37].

The BEM is used to model the conductivity of the torso components. It is

combined with a source model, which represents the cardiac electrical activity.

The source model can be a small number of dipole sources inside the myocardium

[16, 19, 32, 52], which can be computed from membrane potentials simulated by

a reaction-diffusion model [51] or by simpler models [28]. Other source models

are the “uniform-” or “oblique dipole layer” on the activation front [6, 7, 42] and

the “equivalent double layer” on the surface of the myocardium [11, 35, 36]. We

will discuss only dipole sources.
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The major disadvantage of the BEM model for ECG simulation isits inability

to represent the anisotropy of the extracellular space in the cardiac muscle. Both

intracellular and extracellular anisotropy affect the ECG. Intracellular anisotropy

can be treated straightforwardly, as has been done in several studies [20, 53].

However, when extracellular anisotropy is neglected, the effect of intracellular

anisotropy in the model is exaggerated. Because of this, previous authors have ex-

pressed doubt as to whether such models should represent intracellular anisotropy

[14, 50]. Many models neglected anisotropy completely.

Anisotropy has important effects on the precordial ECG leads. For example,

when subendocardial ischemia is modeled, the effect of anisotropy can make the

difference between a positive and a negative ECG deflection [29], with important

consequences for diagnosis. Thus, anisotropic ECG simulation can be important

and the question is whether BEM models can reliably account for it.

The purpose of this study is to demonstrate that a good approximative treat-

ment of extracellular anisotropy in a BEM model is possible,and that accounting

for both anisotropies improves the simulated ECG. We compared ECGs computed

by a BEM model with those computed by a finite-difference model, in which

anisotropy could be represented without compromise.
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2 Methods

Our methods are based on the bidomain model of cardiac tissue[14, 18, 32], which

treats the myocardium as two continuous co-located media called the intracellular

and extracellular domain, which are separated everywhere by the cell membrane.

The conductivity in each domain is greater along than acrossthe muscle fibers. We

denote the fiber direction by a field of normalized row vectorsâ= (ax,ay,az). The

conductivity of each domain can then be characterized by a tensor field, generated

by the function

G(σL ,σT) = σT1+(σL −σT)âTâ (1)

where1 is a unit tensor, andσL andσT are the conductivities parallel and perpen-

dicular to the fiber axis, respectively [8]. LetσiL andσiT be the intracellular con-

ductivities parallel and perpendicular to the fibers, respectively, andσeL andσeT

their extracellular equivalents. We define the intracellular and extracellular con-

ductivity tensors fields asGi = G(σiL ,σiT) andGe = G(σeL,σeT). The anisotropy

ratios of the two domains areRi = σiL /σiT andRe = σeL/σeT. An overview of all

conductivity values and anisotropy ratios is given in table1.

Potential fieldsφi and φe in the two domains are related to current density

fieldsJi = Gi∇φi in the intracellular domain andJe = Ge∇φe in the extracellular

domain [14]. The divergence of each current density field equals the current that

flows through the cellular membrane; this current must have equal magnitude and

opposite sign in the two domains. Thus, the bidomain model can be summarized

with the following equation [14, 18, 32]:

∇ · (Gi∇φi) = −∇ · (Ge∇φe) (2)

It is convenient to use the transmembrane potentialVm = φi − φe to eliminateφi

from equation (2); after-re-arranging terms we obtain an implicit equation forφe

in terms ofVm:

∇ · ([Gi +Ge]∇φe) = −∇ · (Gi∇Vm). (3)
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In this study ECGs were simulated from given membrane potentials (Vm) by

a BEM model and by a finite-difference (FD) model of the human torso. The FD

model solved the extracellular potentialφe from equation (3). The BEM model is

conceptually more complicated. Its source model is an equivalent current density

Jc = −Gc∇Vm (4)

with Gc a proposed “compound” conductivity tensor field

Gc = fcG(RcσiT ,σiT) (5)

wherefc is an isotropic amplification factor andRc a chosen “compound anisotropy

ratio.” The parametersfc andRc were obtained by fitting a BEM-derived ECG to

an FD-derived ECG, as detailed in Results. The volume conductor for the BEM

model is piecewise continuous and isotropic with conductivity σB. Conductivity

values used in this study are listed in table 1. Details on thetwo ECG models are

given in the following sections.

The underlyingVm were computed by a monodomain reaction-diffusion model

of the human heart, as detailed in the next section. The anatomy of the heart and

thorax was obtained from in-vivo magnetic resonance imaging data [27].

2.1 propagation model

Propagating action potentials were computed with a monodomain reaction-diffusion

model [40, 51]. This model integrated the equation

Cm
∂Vm

∂ t
= β−1∇ ·

(

G(σmL,σmT)∇Vm
)

− Iion (6)

whereβ is the membrane surface to volume ratio,Cm is the membrane capacitance

per unit area,Iion the sum of all transmembrane ionic currents, and the equiva-

lent “monodomain” conductivities are defined asσmT = σiTσeT/(σiT +σeT), and

σmL = σiL σeL/(σiL +σeL) [40]. Membrane potentials were stored at 1-mm spatial

resolution at a 1-ms interval. Each simulation had a duration of 500 ms.
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The patient-tailored cardiac anatomy was used for this simulation. Cardiac

fiber orientation was mathematically defined as previously described [40]. This

procedure was performed at 0.2-mm resolution to obtain smooth fiber orienta-

tion profiles. Tissue types and fiber orientations were then subsampled to 1-mm

resolution. This subsampled heart model was inserted in theFD torso model, as

discussed later on. For the propagation model, which workedat 0.2-mm resolu-

tion, each voxel of the subsampled model was replicated 5 times in each spatial

dimension, to obtain exactly the same geometry as in the FD torso model.

Because the heart of our patient was relatively large, we assumed that its my-

ocytes were larger than average, and therefore set the surface-to-volume ratio of

the cells 20 % smaller than the normal value in our model, to 800 cm−1. This led

to realistic activation times.

2.2 BEM model

Previously-described BEM software was used to compute the ECG from the re-

gional dipoles [16, 28, 30, 51]. Briefly, this software uses an integral equation for

the potential on the surface triangles due to the regional dipoles. This method,

which was first proposed by Barr et al. in 1966 [2, 4], has been used in many

studies and is well explained in textbooks [14, 39]. Becausethis method is well

covered in the literature we give only a brief outline here. Details of our imple-

mentation can be found in previous publications from our laboratory [28, 30].

Let a set of surfacesSk bound several regions of continuous isotropic conduc-

tivity σ . The notationσ−
k indicates the conductivity inside surfacek, andσ+

k the

conductivity outside surfacek. In one or more of these regions there is a source

current density fieldJc (equation 4). The potential at a pointr on surfacek is given

by
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φek(r) =
1

2π(σ−
k +σ+

k )

[

∫

Jc(r ′) ·
r − r ′

|r − r ′|3
dV ′

+∑
ℓ

∫

Sℓ

(σ−
ℓ −σ+

ℓ )φe(r ′′)dΩrr′′

]

(7)

wherer ′ andr ′′ are variable points, the summation is over all surfacesℓ, anddΩrr′′

is the solid angle subtended atr by the infinitesimal surface element situated atr ′′

[4, 14]. When discretized on a set of triangulated surfaces,this is a system of linear

equations forφe on all surface triangles, with a right-hand side determinedby the

dipole sourcesJc.

The source termJc was evaluated at 1-mm resolution according to equation

(4) and then integrated over “dipole regions.” Except wherementioned otherwise,

the heart was divided intoNd = 29689 dipole regions. Evaluation ofJc at 1-mm

resolution allows the local fiber orientation to be taken into account [53], while the

regional integration serves to arrive at a manageable number of sources [28, 51].

Equation (7) was solved (using an iterative method) with a right-hand side in

which one of the 3 spatial components of one of theNd dipoles was set to unity,

and all others were set to zero [30]. This process was repeated for every component

of every dipole in turn. Each solution yields a set of transfer coefficients that link

the dipole component to a contribution to the potential on each of theNt triangles.

Thus, a total of 3NtNd coefficients link all dipoles to all surface potentials. The

coefficients that relate to the outer torso surface triangles were stored and used to

compute individual ECGs, while those related to internal surfaces were discarded.

In general, the potentials on internal surfaces close to theheart are too inaccurate

to be useful, while those on the outer torso surface are highly accurate [14].

The anatomic model, consisting of a set of triangulated surfaces, is shown

in figure 1. The torso surface and the inside of the skeletal muscle layer were

described by 1216 triangles each. Each lung had∼ 160 triangles, and the intra-

cavitary blood masses∼ 800 triangles. The skeletal muscle layer was represented
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using the torso extension method introduced by McFee and Rush [16, 31, 48]. This

anisotropic layer with variable fiber orientation, which isassumed to have conduc-

tivities 0.43 and 6.67 mS/cm [31, 44], is replaced by a thicker isotropic layer with

conductivity 1.25 mS/cm. We used a thickness of 4 cm, which issomewhat more

than previously reported [16], because our subject was large and heavily-built. A

conductivityσB = 2.0 mS/cm was used for the torso, including the myocardium

[16]. Values ofσB for all regions are listed in table 1.

2.3 FD model

The FD model of the heart and thorax had a resolution of 1 mm andwas obtained

by scan-converting the surface model of the thorax and inserting the 1-mm version

of the heart model. The skeletal muscle layer was represented in the same way as

in the BEM model.

From the simulatedVm at 1-mm resolution,∇ · (Gi∇Vm) was evaluated and

used to computeφe by solving equation (3). This was done using our previously-

described software [40] but with 100-fold lower error tolerance levels needed to

compute an ECG with< 0.1 mV precision.

2.4 Comparison

The crucial difference between the BEM and FD models is the conductivity of the

extracellular space: the BEM model used an isotropic conductivity σB, whereas

the FD model used anisotropic valuesσeL andσeT (table 1). Our purpose is to

try to compensate for the lack of extracellular anisotropy in the BEM model by

selecting appropriate values for the constantsRc and fc.

An analytic solution to this problem exists if both the intracellular and extra-

cellular domain are homogeneous and unbounded [14, 42]. If the coordinate axes
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are chosen such thatGi andGe are diagonal, equation (3) can be rewritten as

∇2φe = −∇ · (Gc∇Vm) (8)

where

Gc = G(σiL /(σiL +σeL),σiT/(σiT +σeT)) (9)

is also diagonal. The anisotropy ratio of this tensor can be written as

Rc =
σiL /(σiL +σeL)

σiT/(σiT +σeT)
= Ri

σiT +σeT

σiL +σeL
=

Ri

R′
(10)

whereR′ = (σiL +σeL)/(σiT +σeT) is the anisotropy ratio of the myocardial bulk

conductivity, which opposes the effect ofRi . For the normal conductivity values

from table 1, we would haveRc = 2.5 andR′ = 4.

In case of the heart in situ, the isotropic torso modifies the effect of the bulk

myocardial anisotropy. Geselowitz and Miller [12] have discussed an analytic so-

lution for the case of a dipole source in the center of an anisotropic sphere embed-

ded in an unbounded isotropic medium of conductivityσ0. In this situation, the

potential at large distance from the sphere can be reproduced by a homogeneous

isotropic medium of conductivityσ0 if the dipole’s transverse and longitudinal

components are multiplied by factorsfT and fL , respectively, given by

fT =
Aσ0

σiT +σeT+Bσ0
(11)

fL =
Aσ0

σiL +σeL +Bσ0
(12)

whereA = 3 andB = 2. If this is a good approximation for the heart in the torso,

we should usefc = fT andRc = Ri fL/ fT. With the values from table 1, we would

now find Rc = 5.5. By analogy with equation (10), we define an effective bulk

anisotropy ratio

R′
eff =

Ri

Rc
=

fT
fL

(13)

which has the value 1.8 in this situation. By comparison withR′, we see that

the isotropic torso reducesR′
eff, and so amplifies the effect of the intracellular

anisotropy of the heart.
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Torso boundaries and inhomogeneities also play a role. Thivierge et al. [50]

showed that for an anisotropic cube in a bounded isotropic medium, the constants

A andB depend onσ0, on fiber rotation, and on the position of the dipole source

in the cube.

Our purpose now is to see how this works out in a complete heartin an inho-

mogeneous torso, where we identifyσ0 with σB for the torso (table 1). Specifi-

cally, we will test if values forRc and fc = fT exist that, if applied throughout the

heart, still result in an acceptable approximation to the anisotropic ECG. Since we

equatefc and fT we will from here on refer only tofT.

We simulated 13 different ECGs with the FD model: a normal activation se-

quence for several different values ofσiL , σiT , σeL, andσeT; and four abnormal

activation sequences with normal conductivity values. In all cases, the propagation

model was based on normal conductivity values.

With the BEM model we simulated, for each activation sequence, ECGs for

Rc = 1.0,1.1, . . . ,10.0 and fT = 0.1,0.12, . . . ,2.0. For each ECG simulated with

the FD model, the BEM ECG with minimal root-mean-square (RMS) difference

was selected. RMS and maximum differences were also plottedas functions of

(Rc, fT) to verify the existence of a global minimum. The best choice is reported

in terms of itsRc and fT. We also givefL , now computed as

fL = fTRc/Ri , (14)

as well asA andB obtained by inverting the linear system defined by equations

(11) and (12), andR′
eff (equation 13). Maximum errors and RMS errors are re-

ported, as well as the relative difference (RD) [35, 52], defined as

RD =

√

∑t ∑n(φBEM
tn −φFD

tn )2

∑t ∑n(φFD
tn )2

(15)

where the indext = 1, . . . ,500 ranges over all samples,n = 1, . . . ,12 over all leads,

φBEM
tn is the ECG potential computed with the BEM model, andφFD

tn the ECG

potential computed with the FD model.
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3 Results

3.1 isotropic BEM versus isotropic FD

Ideally, if both the BEM and FD models use isotropic conductivities throughout,

they should produce equal results. In practice the results differ slightly because

the geometry used in the two models cannot be exactly the same. There were

also small differences in the handling of the conductivity tensor in either model.

UsingσiL = σiT = 0.66 mS/cm andσeL = σeT = σ0 = 2.0 mS/cm in both models,

we found an RMS difference of 34µV, a maximum difference of 273µV, and

RD = 0.08, for a BEM model with 29689 dipoles.

With 5004 dipoles in the BEM model, the difference was slightly larger: 315µV

max, 42µV RMS, RD= 0.10.

With 88 dipoles in the BEM model as in previous work [28, 51], the difference

between isotropic BEM and FD models was 577µV max, 99µV RMS, RD =

0.23.

3.2 anisotropic BEM versus anisotropic FD

Simulations were performed for sinus rhythm and four abnormal activation se-

quences, each initiated by stimulating a single site in the ventricular myocardium:

“apex” = epicardially in the left ventricular (LV) apex, “LVepi” = in the LV free

wall epicardium near the base of the anterior papillary muscle, “LV endo” = en-

docardially at the same site, and “RV endo” = in the right ventricular (RV) endo-

cardium near the RV anterior papillary muscle. The sinus rhythm simulation was

repeated with 8 different conductivity settings for the ventricular myocardium.

Values ofRc and fT were determined that gave an optimal match between BEM

and FD models in a least-squares sense.
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The results of the sinus rhythm simulations are listed in table 2. For normal

conductivity values, RMS and maximum errors (difference between BEM and FD

results) were 46 and 354µV, respectively. This was achieved withRc = 5.8 for

the BEM model. Corresponding parameters according to Geselowitz and Miller

[12, 50] areA = 4.2 (ideally 3) andB = 2.4 (ideally 2). The anisotropy of the bulk

myocardium thus had the effect of amplifying the transversecomponents of the

dipoles by a factorfT = 1.36 and diminishing the longitudinal component by a

factor fL = 0.79.

When conductivity values were varied, the optimal settingsto match BEM

and FD results varied as well. OptimalRc ranged from 3.4 to 7.6. Nevertheless,

RMS errors were acceptable in all cases (at most 77µV). Maximum errors of

up to 530µV (5 mm on standard ECG paper) may seem unacceptable, but these

occurred always at the peak of ECG deflections, with amplitudes of up to 2 mV,

and represented a relative error in the order of 25 %. OverallRD values≤ 0.17

also indicate a good match.

For practical application of the BEM, predetermined valuesof Rc and fT

should be usable for different activation sequences. This is tested in table 3. Op-

timal values ofRc and fT were determined for a normal activation sequence, and

applied to ectopic beats. For the abnormal activation sequences this leads to dou-

bled RMS errors, but not to an increase in maximum errors. Therelatively large

errors for the apically paced sequence are due to the large signal amplitudes it

generates; its RD is relatively low.

When only 88 instead of 29689 dipole sources were used, the difference be-

tween the BEM and FD models for the normal activation sequence (top row in

table 3) increased slightly to 59µV RMS; RD= 0.16, while the maximum error

decreased to 262µV. This indicates that the number of dipoles is not very impor-

tant, even for an anisotropic BEM model.
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3.3 isotropic BEM versus anisotropic FD

An important practical question is whether a BEM should be used with isotropic

or anisotropic conductivity [14, 50]. Therefore we also compared isotropic BEM

results with anisotropic FD results. With fixedRc = 1 we found that the optimalfT

for the normal activation sequence was 1.50. With these values we simulated the

ECGs for the abnormal activation sequences. Results are shown in table 4. RMS

errors are now 3 to 5 times larger than with the anisotropic BEM, and maximum

errors are well above 1 mV. RD values also indicate a bad match.

3.4 only intracellular anisotropy

Some previous studies have used BEM models in which only intracellular anisotropy

was represented, with an anisotropy ratio 9 [20, 53]. We compared the result of

such settings with an FD model in whichRi = 10, as before. With fixedRc = 9 we

found that the optimalfT for the normal activation sequence was 1.01. With these

values we simulated the ECGs for the abnormal activation sequences. Results are

shown in table 5. RMS errors and RD are considerably larger than in the BEM

model withRc = 5.8, but not as large as in the fully isotropic model.

3.5 qualitative comparison

The main results are repeated in figure 2 to allow a qualitative comparison of BEM

and FD results. In each panel, an ECG simulated with the BEM model (black)

is printed superposed on an ECG simulated with the FD model (gray). The two

simulations are hardly distinguishable in the isotropic case. Small differences on

the peaks of the T waves can be observed when anisotropic models are compared.

In contrast, an isotropic model compared to an anisotropic model shows a different
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progression of R/S waves through the precordial leads (onlyV1, V3 and V5 are

shown).
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4 Discussion

This study demonstrates that ECGs computed with a BEM model closely resemble

those computed with an anisotropic FD model if a suitable compound anisotropy

(Rc) and scaling factor (fT) are used. We foundRc ≈ 6. Although optimal param-

etersRc and fT have to be found experimentally for a given set of heart and torso

conductivities, and perhaps also depend on the torso anatomy, they can be used for

different activation sequences. Thus, one comparison withan FD model suffices

to gauge a given BEM model.

The perceived impossibility of representing extracellular anisotropy in a BEM

model has caused previous authors to take two different approaches: fully isotropic

models [1, 28, 32] and models that represented intracellular anisotropy only [20,

53]. Our study shows that there is no need for such extreme positions, because

an intermediate value ofRc results in a very accurate representation of the two

anisotropies. The use of intracellular anisotropy alone gave better results than full

isotropy, but the best results were obtained with an intermediate value.

In general, anisotropy cannot be neglected in forward ECG simulation [15,

29, 33, 50, 53]. We found differences between isotropic and anisotropic models

primarily in the precordial leads V1 to V5. Difficulties withleads V3–V5 can be

observed in studies that used fully isotropic models [45], and in others were prob-

ably hidden because activation sequences and heart orientation were, especially in

older studies, often adapted to improve the ECG.

4.1 role of intracellular and extracellular conductivities

The results in table 2 show that the effect of the torso and thefour intracellular and

extracellular conductivities on the surface ECG can be approximated with a single

compound anisotropy ratioRc and an amplification factorfT. As expected, larger

Ri led to largerRc, and largerRe led to smallerRc. These relations were nonlinear.
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The normal valueRc = 5.8 was much larger than what would be expected for an

unbounded homogeneous myocardium (2.5) but similar to the value expected for

an anisotropic sphere embedded in an unbounded isotropic medium (5.5). This

similarity is probably coincidental, since it only occurred for the normal set of

conductivities. Moreover, the anisotropic-sphere approximation did not accurately

predict fT.

As expected, higher extracellular conductivity led to smaller ECG signals

(smaller fT), and higher intracellular conductivity to larger ECG signals (larger

fT). These relationships were nonlinear.

Differences between the FD model and the anisotropic BEM model (table 3)

depended on the activation sequence. This may be due to the variable importance

of propagation along the fibers in different activation sequences.

4.2 modeling techniques

Application of the most efficient numerical techniques was not a priority in this

study. Our FD model based on a regular mesh with 1-mm resolution ensured suffi-

cient accuracy, but is far from efficient. We chose this method for practical reasons

only and do not recommend its application in general. A more efficient approach

is a finite-element (FE) discretization of the heart, coupled with a BEM model of

the torso [5, 10] or as an integrated part of an FE torso model [26]. Regular FD

meshes of the torso at lower resolutions than our 1 mm have also been reported

[22–24, 54].

Similarly, a BEM model with nearly 30 thousand dipole sources is not useful

in all BEM applications. We used this large number to minimize bias due to sys-

tematic errors. Comparisons with a BEM model using only 88 dipoles, the number

we used in previous work [28, 51], showed a small increase in RMS error. Inter-

estingly, an isotropic model seemed to be more sensitive to asmall number of



18

dipoles than an anisotropic model. This may be explained by the greater influence

of transmural dipole components in the isotropic model. This component is most

affected by the error introduced by spatial averaging in large dipole regions.

Thus, the ability of the BEM model with dipole sources to dealwith anisotropy

does not rely on a large number of dipoles. It depends only on the evaluation ofJc

(equation 4) on a scale that is small enough to account for local fiber orientation.

The effect of the regional integration ofJc, which is done to arrive at a reasonable

number of dipoles to place in the BEM model, is to approximatethe locations of

all “small” dipoles in a region by the location of the “large”dipole. The effect of

this approximation on the ECG is negligible.

4.3 related studies

In the limited space of a research paper we cannot do justice to all the work that

has been done on forward ECG simulation. Several good reviews [13, 17, 34]

and textbooks treat this subject in depth. Here, we give a limited account of the

discussion on anisotropic forward models and the accuracy of BEM models.

Several authors have discussed the relative merits of integral equations dis-

cretized with the BEM on the one hand, and differential equations discretized

with FD/finite-element (FE) methods on the other [38, 41, 46,49]. However, these

studies addressed the relation between torso surface potentials and cardiac surface

potentials – a very different source model than ours. With epicardial potentials

as a source model, anisotropy cannot be accounted for at all.The same is true

for equivalent double layer models [11, 35, 36], in which thesource consists of

(equivalent) membrane potentials on the myocardial surface. With some notable

exceptions [37], these source models are mostly used for inverse models, where

anisotropy is deemed less important than in forward ECG models [33].
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As discussed above, the situation is different when currentdipole sources

throughout the cardiac volume are used. If these are evaluated at high spatial reso-

lution, e.g. 1-mm3 volumes in our study, inhomogeneous intracellular anisotropy

can easily be taken care of (equation 4), as shown, for example, by Wei et al. [53].

Hren et al. [20] named this an “oblique dipole model.” Representing intracellu-

lar anisotropy and neglecting extracellular anisotropy would result in exaggerated

anisotropic effects [14, 50], so the relevant questions that remained were whether

extracellular anisotropy can be accounted for, and whetherthis improves the ECG.

Our answer to both questions is affirmative. These conclusions, obtained here with

a model based on volume-averaged current dipoles, may also apply to the oblique

dipole layer model [6, 7]. Such an approach has in fact been used by Roberts and

Scher [42], with analytically-derivedfT and fL for a spheroidal wave front, to

simulateφe inside the heart muscle.

4.4 inhomogeneities

A remaining limitation of BEM methods is that they cannot treat inhomogeneous

conductivity as easily as FD and FE methods. In our study, theheart was anisotropic

with inhomogeneous fiber orientation, but the longitudinaland transverse conduc-

tivities were the same throughout the myocardium. It is not clear whether an area

with different conductivity parameters could be treated ina BEM model by assign-

ing other values for the parametersRc and fT in this area. It could be necessary to

assign a boundary around such an area. Inhomogeneity plays arole when, for ex-

ample, hypertrophy, cardiomyopathy, or an advanced state of myocardial ischemia

or infarction is modeled.
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4.5 Conclusion

We conclude that not only intracellular, but also extracellular anisotropy can be

implemented in current dipole-based BEM models for the ECG,and that repre-

senting both anisotropies improves the accuracy of the simulated ECG. As a rule

of thumb, a compound anisotropy ratio of 6 can be used.

Acknowledgements The authors would like to thank Dr. André Linnenbank and Dr.
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Table 1 Tissue conductivity values

material source σiT σiL Ri σeT σeL Re σB

ventricular muscle [43] 0.30 3.00 10 1.20 3.00 2.5 2.00

body [31] 0 0 2.00 2.00 1 2.00

blood [31] 0 0 6.00 6.00 1 6.00

lung [31] 0 0 0.50 0.50 1 0.50

skeletal muscle1 [31] 0 0 1.25 1.25 1 1.25

air [31] 0 0 0 0 0

1value adapted for treatment of anisotropy; see text.

Units are mS/cm. “source” = literature reference.
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Table 2 Anisotropic BEM with optimal settings compared to anisotropic FD.

conductivity (mS/cm) error (µV)
sequence σiL σiT σeL σeT Ri Re rms max RD Rc fT fL A B R′

eff

normal 3.00 0.30 3.00 1.20 10 2.5 46 354 0.13 5.80 1.36 0.79 4.22.4 1.7
normal 3.00 0.30 1.50 0.60 10 2.5 77 340 0.17 3.80 1.98 0.75 2.2 0.7 2.6
normal 3.00 0.30 4.50 1.80 10 2.5 50 352 0.16 7.20 1.06 0.76 7.3 5.9 1.4
normal 1.50 0.15 3.00 1.20 10 2.5 25 171 0.13 5.60 0.75 0.42 1.5 1.3 1.8
normal 4.50 0.45 3.00 1.20 10 2.5 68 530 0.14 5.80 1.89 1.10 7.6 3.2 1.7
normal 3.00 0.30 3.00 0.60 10 5.0 74 361 0.17 3.40 1.98 0.67 2.6 0.9 2.9
normal 3.00 0.30 3.00 1.80 10 1.7 50 347 0.15 7.60 1.06 0.80 6.5 5.1 1.3
normal 3.00 0.30 1.50 1.20 10 1.2 47 346 0.12 6.20 1.36 0.85 3.3 1.7 1.6
normal 3.00 0.30 4.50 1.20 10 3.8 46 359 0.13 5.20 1.36 0.71 4.4 2.5 1.9

σiL , σiT , σeL andσeT are the conductivities used by the FD model. error = difference between BEM and FD simulated

ECGs. normal = sinus rhythm. Bold type is used to highlight abnormal conductivity settings.

Table 3 Anisotropic BEM with fixedRc and fT compared to anisotropic FD.

conductivity (mS/cm) error (µV)
sequence σiL σiT σeL σeT Ri Re rms max RD Rc fT fL A B R′

eff

normal 3.00 0.30 3.00 1.20 10 2.5 46 354 0.13 5.80 1.36 0.79 4.2 2.4 1.7
LV apex 3.00 0.30 3.00 1.20 10 2.5 115 221 0.10 5.80 1.36 0.79 4.2 2.4 1.7
LV epi 3.00 0.30 3.00 1.20 10 2.5 80 374 0.11 5.80 1.36 0.79 4.2 2.4 1.7
LV endo 3.00 0.30 3.00 1.20 10 2.5 76 322 0.14 5.80 1.36 0.79 4.2 2.4 1.7
RV endo 3.00 0.30 3.00 1.20 10 2.5 85 423 0.10 5.80 1.36 0.79 4.2 2.4 1.7

Bold type is used to highlight newly fixed parameter settings. apex = apical stimulation (see text). endo/epi = endocardial/

epicardial stimulation (see text). Other abbreviations are as in table 2.

Table 4 Isotropic BEM compared to anisotropic FD.

conductivity (mS/cm) error (µV)
sequence σiL σiT σeL σeT Ri Re rms max RD Rc fT fL A B R′

eff

normal 3.00 0.30 3.00 1.20 10 2.5 211 1833 0.59 1.00 1.50 0.15 – – 10
LV apex 3.00 0.30 3.00 1.20 10 2.5 401 1579 0.34 1.00 1.50 0.15 – – 10
LV epi 3.00 0.30 3.00 1.20 10 2.5 393 1213 0.54 1.00 1.50 0.15 – – 10
LV endo 3.00 0.30 3.00 1.20 10 2.5 367 1239 0.65 1.00 1.50 0.15 – – 10
RV endo 3.00 0.30 3.00 1.20 10 2.5 447 1815 0.53 1.00 1.50 0.15 – – 10

Bold type is used to highlight newly fixed parameter settings. Abbreviations are as in tables 2 and 3.

Table 5 BEM with only intracellular anisotropy compared to anisotropic FD.

conductivity (mS/cm) error (µV)
sequence σiL σiT σeL σeT Ri Re rms max RD Rc fT fL A B R′

eff

normal 3.00 0.30 3.00 1.20 10 2.5 95 238 0.26 9.00 1.01 0.91 – – 1.1
LV apex 3.00 0.30 3.00 1.20 10 2.5 113 264 0.10 9.00 1.01 0.91 – – 1.1
LV epi 3.00 0.30 3.00 1.20 10 2.5 126 423 0.17 9.00 1.01 0.91 – – 1.1
LV endo 3.00 0.30 3.00 1.20 10 2.5 155 489 0.28 9.00 1.01 0.91 – – 1.1
RV endo 3.00 0.30 3.00 1.20 10 2.5 155 799 0.18 9.00 1.01 0.91 – – 1.1

Bold type is used to highlight newly fixed parameter settings. Abbreviations are as in tables 2 and 3.
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Figure Captions

1 Anatomic model. The triangulation of the torso corresponds to

that used in the BEM model. For clarity, other components are

shown as smooth surfaces. The standard ECG electrodes (three

limb electrodes and six precordial electrodes) are shown asgreen

spheres. For actual simulations the torso surface was replaced by

inner and outer surfaces of the skeletal muscle layer, and elec-

trodes moved to the outer layer. . . . . . . . . . . . . . . . . . . . 28

2 Comparison of ECGs simulated with an FD model (gray) and with

a BEM model (black). ECGs were obtained from a normal (si-

nus rhythm) activation sequence. A representative subset of the

standard 12-lead ECG is shown. ECGs are displayed in the con-

ventional way, using grid lines with 40 ms spacing horizontally

and 0.1 mV spacing vertically, and no axis labels.A: both models

isotropic (RD= 0.08). B: both models anisotropic (RD= 0.13,

table 3).C: fully isotropic BEM versus anisotropic FD model

(RD = 0.59, table 4). . . . . . . . . . . . . . . . . . . . . . . . . 29
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Fig. 1 Anatomic model. The triangulation of the torso correspondsto that used in the BEM

model. For clarity, other components are shown as smooth surfaces. The standard ECG elec-

trodes (three limb electrodes and six precordial electrodes) are shown as green spheres. For

actual simulations the torso surface was replaced by inner and outer surfaces of the skeletal

muscle layer, and electrodes moved to the outer layer.
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A I II III V1 V3 V5

B I II III V1 V3 V5

C I II III V1 V3 V5

25 mm/s  10 mm/mV25 mm/s  10 mm/mV

Fig. 2 Comparison of ECGs simulated with an FD model (gray) and witha BEM model (black).

ECGs were obtained from a normal (sinus rhythm) activation sequence. A representative sub-

set of the standard 12-lead ECG is shown. ECGs are displayed in the conventional way, using

grid lines with 40 ms spacing horizontally and 0.1 mV spacingvertically, and no axis labels.

A: both models isotropic (RD= 0.08).B: both models anisotropic (RD= 0.13, table 3).C: fully

isotropic BEM versus anisotropic FD model (RD= 0.59, table 4).


