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Abstract

Computer models of cardiac activation are constantly growing in terms of

accuracy and resource usage. The availability of powerful parallel computers

has allowed us to create a program that computes intracellular and extracel-

lular potentials in a model of a complete human heart, basing on a model of

the ionic currents in the cell membrane and the bidomain model of cardiac

tissue. Potentials were computed on a regular finite-difference grid of 50 mil-

lion nodes, using a forward-Euler approximation for the membrane potential

and a BiCGStab linear-system solver with a parallelized incomplete-LU pre-

conditioner to solve for the extracellular potentials. Realistic extracellular

signals and epicardial potential distributions were obtained.

In memory of Prof. Ramesh M. Gulrajani (1944–2004).

1 Introduction

We present a computer heart model that simulates intracellular and extracellular

potentials in the entire human heart, based on the bidomain equations for car-

diac tissue in combination with a realistic membrane model. It differs from our

previous model [8] by solving the general bidomain equations rather than a mon-

odomain approximation and thus augments the simulation results with realistic

extracellular potentials. The fine spatial discretization that is required and the dif-

ficulty of solving notably the extracellular potential on a large grid make that our

model needs powerful supercomputers that have only recently become available.

2 Methods

We used a 50-million node model of the human heart embedded in a thin layer

of fluid at 0.2-mm resolution (figure 1). The model is anisotropic with rotating

fiber direction [4], and incorporates a representation of the specialized conduction

system using the early activation times published by Durrer et al. [2].
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Figure 1: Longitudinal section of the heart model showing the tissue embedded in a thin

layer of fluid. The fluid layer and the three cell types are indicated.

The bidomain model [3] describes the cardiac tissue as consisting of two co-

located continuous media termed the intracellular and extracellular domain, which

are characterized by conductivity tensors Gi and Ge, respectively. Between the

two domains a current with density Im flows. The intracellular and extracellular

potentials φi and φe are subject to the bidomain equations:

∇ · (Gi∇φi) = Im (1)

∇ · (Ge∇φe) = −Im (2)

The transmembrane current density Im has a capacitive part as well as an ionic

part Iion generated by the cell membrane and an imposed stimulation current Is:

Im = β(Cm ∂Vm/∂t + Iion + Is) (3)

where β is the membrane surface-to-volume ratio and Cm is the membrane capac-

itance per unit area. The ionic current Iion is dependent on the membrane potential

Vm ≡ φi−φe and on time, and is governed by a membrane model [1].

When the bidomain equations are discretized, they may be written as

V t+δt
m = V t

m +
δt

βCm

{

A · (V t
m +φt

e)−β(It
ion + It

s)
}

(4)

B ·φe = A ·Vm (5)

with A and B two N ×N matrices whose coefficients can be computed from

Ge + Gi and Gi, respectively; N being the number of nodes. We computed these

matrices using an algorithm presented by Saleheen and Ng [6]. Propagation of Vm

at each time step proceeds by evaluation of (4), after computation of Iion by the
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Figure 2: Epicardial potentials 10 ms after sub-epicardial pacing. The epicardium was cut

open at the right-ventricular side and folded out to show it entirely. Isopotential lines are

drawn at levels of 0.01 mV, 0.02 mV, 0.04 mV etc. Negative potentials are shown in shades

of gray, positive in white. The dark grey area thus represents depolarized tissue. The

somewhat jagged shape of the isopotential lines is caused by the steps in the discretized

shape of the model heart. Selected electrograms are shown.

membrane model. The new Vm is then used to compute φe using (5). This is a sys-

tem of N linear equations which can in general be solved with standard software

libraries if N is sufficiently small. In our case, where N is typically 50 million,

custom routines proved to be necessary. After experiments with other routines,

we implemented a biconjugate gradient stabilized (BICGSTAB) solver [9] with a

parallelized incomplete-LU preconditioner [5]. Simulations were performed on

32 processors of a 128-processor SGI Altix 3700 computer.

3 Results

A verification of the model was performed by simulating epicardial potential maps

obtained after epicardial and intramural pacing in open-chest dogs [7]. Early po-

tentials in our simulations reflected the local fiber direction. Development of the

potential pattern reflected the transmural rotation of fibers, showing an expansion

and counterclockwise rotation of the positive areas for (sub)epicardial pacing, ex-

pansion and clockwise rotation for sub-endocardial pacing, and a more symmetric

expansion for mid-wall pacing. Early potentials and epicardial electrograms in

case of sub-epicardial pacing are illustrated in figure 2.

4 Discussion

We presented a bidomain model of the entire human heart incorporating anisotropic

tissue with rotating fiber direction, which can realistically simulate epicardial, en-

docardial, intracavitary, and intramuscular signals that can be compared to mea-
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sured signals, and can simulate the changes that occur in these signals as a result

of e.g. abnormalities in ion channels, ischaemia, hypertrophy and fibrosis. Torso

coupling can be employed to obtain highly realistic ECG waveforms as well.
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