propag-4

Section Page

MEMORY

Introduction 1

NIOES .ttt)
HoUSEKEEDINgG . . oo oot 6
Memory-allocation functions 9
The memory table 11
Memory Protection 13
Memory toUChINGo 14
Index o 16

Revision: 4.12 , April 24, 2009

0 O Ui Wi =

When I was younger, I could remember anything, whether it had
happened or not

—MARK TWAIN

81 MEMORY April 24, 2009 INTRODUCTION 1

1. Introduction. The functions defined in this document deal with several aspects of memory allocation.
Services that they provide include checking for allocation failure, reporting to the logfile, memory protection,
and gathering of statistics.

The MALLOC and CALLOC macros are the preferred interface for memory allocation. They take three
arguments (N, typ, what), where N is the number of elements; typ is a literal giving the type of variable
(such as float); and what is a string that will be used in the logfile message that is generated for each
allocation. The messages can be suppressed (for an allocation in a long loop, for example) by giving A or
an empty string ("") for the what argument. The type argument is used both to compute the amount of
memory required and to typecast the pointer to the correct type, allowing the compiler to check for errors.
Compilers cannot see anything wrong in float xarr = calloc(4, sizeof (short)), but they will bark at float
«arr = CALLOC(4, short, "arr").

The TMALLOC and TCALLOC macros do the same as MALLOC and CALLOC, but also touch the memory with
the right processor. These are rarely used, because touching is often done implicitly by some useful operation.

The SMALLOC and SCALLOC macros do the same as MALLOC and CALLOC, but don’t enter the pointer in the
memory table. They do update the total memory counter, however. These are intended for large numbers
of small allocations.

If a really large number of small allocations is used, say millions, even SMALLOC and SCALLOC should not be
used. Using millions of allocations is not likely to be efficient on a multiprocessor machine. If it is necessary,
it should be done directly with malloc or calloc.

The Protect function uses the memory table to enable memory protection for an array indicated only with
its pointer, without the need to specify its size. Memory protection affects performance. It can be switched
on or off with the protect_memory parameter.

When the above functions are used consistently, propag knows how much memory it uses. The mazmem
parameter allows the user to set a maximum and prevent the program from over-allocating. This can be
useful, for example, in an interactive PBS job, to make a graceful stop when the program accidentally
allocates more then the limit imposed by PBS — instead of receiving a KILL signal.

2. This should normally be all that’s needed in other modules. Remaining calls to the underlying functions
should be replaced. The *ALLOC macros force a typecast to the return argument with the same type as used
in sizeof, so the compiler will warn if we may be allocating with the wrong size, for example, when changing
a typedef somewhere. Multiplications are done in size_t to rule out integer overflow.

(declare interface 2) =
#define MALLOC(N, typ, what) (ty
#define CALLOC(N, typ, what)(ty
(
(
(

p *)Malloc ((size_t) (N) x sizeof (typ), what, 1)
p *)Calloc ((size_t) (N),sizeof (typ), what,1)
) ((typ *) Malloc((size_t) (N) x sizeof (typ), what, 0))

#define SCALLOC(N, typ, what) ((typ *) Calloc((size_t) (N),sizeof (typ), what,0))
#define TMALLOC(N, typ, what) ((typ *) Touch_Malloc((size-t) (N), sizeof (typ), what))
#define TCALLOC(N, typ, what) ((typ *) Touch_Calloc((size_t) (), sizeof (typ), what))

void Protect(void *addr,int mode);

void report-memory();

#define SMALLOC(N, typ, what
t

See also section 3.

This code is used in section 4.

3. These functions are also public, although they should be used only exceptionally.

(declare interface 2) +=
void xMalloc(size_t n,char xwhat,int tabit);
void *Calloc(size_t n,size_t s, char xwhat,int tabit);
void *Touch_Calloc(size_t n,size_t s, char xwhat); /* see below */
void *Touch_Malloc(size_t n,size_t s,char xwhat); /* see below x/

2 INTRODUCTION MEMORY April 24, 2009 84

4. Here’s the full header file. It includes "mman.h", which applications will need for the values of the mode
argument to Protect().
(propag_alloc.h 4)=
[//,$1d: memory.web, v, 4.12,2009/04/24,14:52:44 potse Exp $u |
#include <sys/mman.h> /= for mprotect-related things =/
(declare interface 2)

float total_mem; /* used in main program x/

5. mnotes. ToDo: Try to use walloc to have all memory page-aligned, which is necessary for memory
protection with mprotect(2). There is no vcalloc, so we implement memory cleaning here.

ToDo: Replace obsolete valloc with posiz_memalign.

ToDo: Use memtab also to combine information with dlook output, to check memory placement for
individual arrays.

Note: size_t is 8 bytes on large systems like the Altix, so the entire system memory can be allocated at
once if desired. However, applications of Malloc should take care prepare their n argument in an 8-bytes
type like size_t or long rather than a 4-byte int if chunks larger than 2 GB are required.

86 MEMORY April 24, 2009 HOUSEKEEPING 3

6. Housekeeping. This file implements the interface functions declared above, as well as some private
functions.

(propag_alloc.c 6)=
[//,$1d: memory.web, v, 4.12,2009/04/24,14:52:44 potse Exp $u |
(Preprocessor definitions) /% cweb defines are private x/

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h> /x for sysconf x/

#include <string.h>

#include "propag_alloc.h"

#include "propag.h" /* get the protect_memory parameter and error functions */
(function definitions 7)

7. This is a private function. For any expected memory usage, print at most four digits followed by a
multiplier. It will print, for example, from “1G” upto “9999G,” followed by “1T,” etc. Presently, even
“64-bits” machines have bus widths of only 48 bits, or other limitations on addressable memory, so we don’t
expect many exabytes for a while. Propag has run with upto 1.2T (exp268x11).

#define KILO 102411, /% 210 =103 «/

#define MEGA (KILO xKILO) /% 220 =105 «/
#define GIGA (MEGA xKILO) /x 230~ 10% %/
#define TERA (GIGA *xKILO) /% 2%~ 10'%2 %/
#define PETA (TERA xKILO) /x 259~ 10'° %/
#define EXA (PETA xKILO) /x 260~ 108 %/

(function definitions 7) =
static char xprint_big_-number (float x)

{

static char s[40];
if (z > 9995« TERA) sprintf (s, "%.3g",x);
else if (z > 9995 % GIGA) sprintf(s,"%.0fT", z/TERA);
else if (z > 9995 « MEGA) sprintf (s, "%.0£G",z/GIGA);
else if (z > 9995« KILO) sprintf(s,"%.0fM", x/MEGA);
else if (z > 9995) sprintf (s, "%.0fk", x/KILOD);
else sprintf (s,"%.0f", x);
return s;
}
See also sections 8, 9, 10, 13, 14, and 15.

This code is used in section 6.

8. This function is called a few times by the main program, e.g. at the end.

(function definitions 7) +=
void report_memory ()

{

logline ("MEM", "allocated, memory_at this time is,k%s", print_big-number (total_mem));

}

4 MEMORY-ALLOCATION FUNCTIONS MEMORY April 24, 2009 89

9. Memory-allocation functions. This is the main allocator. It checks whether the total memory will
not surpass mazmem (if specified), checks for allocation failure, and stores information in the memory table.
For memory protection, allocation areas must be aligned on memory pages (16 kB on the Altix 4700). This
is done by walloc. Apparently the memory size for valloc must be a multiple of the page size too.

(function definitions 7) +=
(declare memory table 11)

void xMalloc(size_t n,char xwhat,int tabit)
{
char xp;
size_t pagesize, sz, n0, nl;
if (mazmem > 0 A total_mem + (float) n > mazmem * GIGA) {
Error(1,"allocation of %1d bytes, (%f MB) for %s will surpass maxmem=%fGB", (long)
n, ((float) n)/MEGA, what A strlen(what) ? what : "<anonymous>", marmem);

n0 = (long) sbrk(0);
if (protect_-memory) {
pagesize = sysconf (_SC_PAGESIZE);
sz = pagesize x (n/pagesize + 1);
p = valloc(sz); /* code = posiz_memalign (&p, pagesize, sz); */
if (-p) {
Error(1,"allocation of %d bytes, (%f MB) for %sufailed", n, ((float) n)/MEGA,
what A strlen(what) ? what : "<anonymous>");
}

}

else {
sz =mn; /* need sz below */
if (=(p = malloc(n))) Error(1,"allocation of %ld bytes,(%f MB) for %s,failed", (long)
n, ((float) n)/MEGA, what A strlen(what) ? what : "<anonymous>");
}

nl = (long) sbrk(0);
if (n1 — (long) p <n) Error(l,"malloc fails: n=%1d, space=%d\n", (long) n,n! — (long) p);
if (tabit) (store in memory table 12)
total_mem += (float) n;
if (what A strien(what))

logline ("MEM", "allocated, %1d-->%1d bytes for %suat kpuototal=Ys", (long) n, (long)

sz, what, p, print_big_number (total_mem));

return p;

}

10. This is the equivalent of calloc. It uses Malloc to do the allocation itself.

(function definitions 7) +=
void *Calloc(size_t n,size_t s,char xwhat,int tabit)
{
void *p;
char xq, xe;
p = Malloc(n * s, what, tabit);
e = (char *) p+n*s;
for (¢ = (char x) p; ¢ <e; g++) #q=0;
return p;

811 MEMORY April 24, 2009 THE MEMORY TABLE 5

11. The memory table. Information about each allocation is stored in the memtab array. This array
is used by the Protect function to obtain the size of the area to be protected.

(declare memory table 11) =
typedef struct {
void xaddress;
long size;
char xname;
} Memtab;
Memtab xmemtab = A;
int Nalloc = 0, memtab_size = 0;

This code is used in section 9.

12. Reallocation of the memory table is worth a warning because it may indicate that Malloc() is called
in a long loop somewhere. Such allocations should use the SMALLOC or SCALLOC macros, which call Malloc
with tabit = 0, instead of MALLOC and CALLOC.

(store in memory table 12) =

if (Nalloc =0) {
memtab_size = 4096;
memtab = malloc(memtab_size * sizeof (Memtab));
logline ("MEM", "Nalloc=%d.; ,allocated memtab to_%1d bytes, memtab=Yp", Nalloc,
memtab_size x sizeof (Memtab), memtab);

if (Nalloc > memtab_size) {
memtab_size x= 2;
Warning (26, "Nalloc=Y%d,,; reallocating memtab to_%d bytes\n", Nalloc,
memtab_size x sizeof (Memtab));
memtab = realloc((void *) memtab, (unsigned long) (memtab_size * sizeof (Memtab)));

memtab|Nalloc].address = p;

memtab|[Nalloc].size = n;

if (what A strlen(what)) memtab[Nalloc]).name = strdup (what);
else memtab[Nalloc].name = strdup (" (anonymous)");
Nalloc++;

}

This code is used in section 9.

6 MEMORY PROTECTION MEMORY April 24, 2009 813

13. Memory protection. This is an easier alternative for the mprotect function; instead of requiring
us to give the size of the area to be protected it obtains this information from the memory table.

If the address isn’t found in the table, that probably means the memory was allocated through SMALLOC
or SCALLOC. That is probably no catastrophe, but it merits a warning.

(function definitions 7) +=
void Protect(void xaddr,int mode)
{
int i, code;
if (protect_-memory) {
for (i =0; i < Nalloc; i++) {
if (memtabli].address = addr) {
code = mprotect(addr, memtab[i.size, mode);
if (code) Error(1l,"memory protection failed, for %s", memtab[i].name);
if (0) logline("MEM", "set memory protection for, %putou%d", addr, mode);
return;
}
}

Warning (24, "address, kpunot found, in memtab: cannot protect memory", addr);

}

§14 MEMORY April 24, 2009 MEMORY TOUCHING 7

14. Memory touching. In order to make the program run efficiently on a multiprocessor machine with
decentral memory but a single memory image, we must suggest to the machine that the memory will be
located near to the processor that will use it most. On the SGI Origin system, this can be done by ‘touching’
the memory with the right processor. To make that possible, we try always to divide the model cells over
the processors in the same way. Memory touching is then done in the same way. The Touch_Calloc function
provides a shorthand for this operation. In some cases it is more efficient to separate allocation and touching,
e.g. when several arrays of the same size must be touched, or if they must be initialized with special values.
In those cases the normal Malloc will be used.

(function definitions 7) 4+=
void *Touch_Calloc(size_t n,size_t s,char xwhat)

{

char xp;

long i, len =n x s; /* OpenMP does not allow size_t for i */
int tabit = 1; /* hack */

long t0, t1;

float rate;

p = (char %) Malloc(len, what, tabit);
t0 = millitime ();
#pragma omp ’paralleluforuschedule(static)uprivate(i) ‘
for (i =0; ¢ <len; i++) p[i] = 0;
t1 = mallitime (); /* time in milliseconds */
if (what A strien(what)) {
rate = (float) len /(0.001 * (t1 — t0) * GIGA);
logline ("TCH", "Touch_Calloc touched sy at k. 3£ GB/s", what, rate);

}

return (void x) p;

}

15. This function doesn’t touch more than necessary. Since we don’t know the size of the elements, we
handle it as an array of char and touch one byte in each memory page.

However, A test on the Altix 4700 (with propag3) showed that this takes exactly the same amount of time
as Touch_Calloc (0.2 seconds for 788 MB on 120 cores). Page size is 16 kB on this system. If the variable
pagesize is int instead of long, it takes twice as long. It seems to take longer with more processors.

(function definitions 7) +=
void xTouch_Malloc(size_t n,size_t s,char xwhat)

{

char xp;

long i, len =n * s; /* OpenMP does not allow size_t for i */
long pagesize, t0, t1;

float rate;

int tabit = 1, /* always true here x/

pagesize = sysconf (_SC_PAGESIZE);
logline ("TCH", "pagesize =_%dk", (int) (pagesize /1024));
p = (char %) Malloc(len, what, tabit);
t0 = mallitime ();
#pragma omp ’paralleluforuschedule(static)uprivate(i) ‘
for (i =0; ¢ < len; i += pagesize) pli] = 0;
t1 = mallitime (); /* time in milliseconds */
if (what A strien(what)) {
rate = (float) len /(0.001 * (t1 — t0) = GIGA);
logline ("TCH", "Touch_Malloc touched }syat k. 3£ GB/s", what, rate);

}

return (void) p;

}

8 INDEX

16. Index.

_SC_PAGESIZE: 9, 15.
addr: 2, 13.
address: 11, 12, 13.
ALLOC: 2.

arr: 1.

calloc: 1, 10.
CALLOC: 1, 2, 12.
Calloc: 2, 3, 10.

code: 9, 13.

dlook: 5.

e: 10.

Error: 9, 13.

EXA: 7.

GIGA: 7,9, 14, 15.
w13, 14, 15.
KILO: 7.

len: 14, 15.

logline: 8, 9, 12, 13, 14, 15.
Malloc: 2, 3, 5,9, 10, 12, 14, 15.
malloc: 1, 9, 12.

MALLOC: 1, 2, 12.
marmem: 1, 9.

MEGA: 7, 9.

Memtab: 11, 12.
memtab: 5, 11, 12, 13.
memtab_size: 11, 12.
mallitime: 14, 15.

mode: 2, 4, 13.

mprotect: 4, 5, 13.

n: 3,9, 10, 14, 15.

Nalloc: 11, 12, 13.

name: 11, 12, 13.

n0: 9.
nl: 9.
omp: 14, 15.

p: 9, 10, 14, 15.
pagesize: 9, 15.

PETA: 7.

posiz_memalign: 5, 9.
print_big-number: 7, 8,6 9.
Protect: 1, 2, 4, 11, 13.
protect_memory: 1, 6, 9, 13.
q: 10.

rate: 14, 15.

realloc: 12.
report_memory: 2, 8.

st 3, 7, 10, 14, 15.
SCALLOC: 1, 2, 12, 13.
size: 11, 12, 13.
SMALLOC: 1, 2, 12, 13.
sprintf: 7.

strdup: 12.

strlen: 9, 12, 14, 15.
sysconf: 6, 9, 15.

MEMORY April 24, 2009

sz: 9.

tabit: 3, 9, 10, 12, 14, 15.
TCALLOC: 1, 2.

TERA: 7.

TMALLOC: 1, 2.
total_mem: 4, 8, 9.
Touch_Calloc: 2, 3, 14, 15.
Touch_Malloc: 2, 3, 15.
type: 1.

t0: 14, 15.

t1: 14, 15.

valloc: 5, 9.

vealloc: 5.

Warning: 12, 13.

what: 1,2, 3,9, 10, 12, 14, 15.
x: 7.

§16

MEMORY April 24, 2009

declare interface 2,3) Used in section 4.
declare memory table 11) Used in section 9.

propag_alloc.c 6)
propag_alloc.h 4)
store in memory table 12) Used in section 9.

(
(
{function definitions 7, 8, 9, 10, 13, 14, 15) Used in section 6.
(
(
(

NAMES OF THE SECTIONS

9

10 NAMES OF THE SECTIONS MEMORY April 24, 2009

