propag-4

STATUS — Saving and reloading status dumps

Introduction
File format
Wbing . o
The pointer file e
Readingo
Bibliography
Index ..o

Version 4.67 — December 23, 2008

Section Page

....... 1 1
....... 3 2
....... 4 3
...... 12 8
...... 14 10
...... 23 15
...... 24 16

How many it had cost in the amassing, what blood and sorrow, . ..

what shame and lies and cruelty. ..

—ROBERT L. STEVENSON, Treasure Island

81 STATUS 4.67 — December 23, 2008 INTRODUCTION 1

1. Introduction. This is one of the documents describing propag-4, a program for large-scale cardiac
simulation, intended to run a model of the human heart. See the document entitled PROPAG for a description
of its purpose and method of documentation, or our published papers for a more general introduction
[trudel:prop,potse:bidofex] and applications [potse:isch].

The functions described in this document write and read status dumps for propag. Status dumps or
“checkpoint files” can be used to recover from an interruption, or to start a simulation with a given non-
resting state. The status dumps can also be read by the prundump program, which translates them into a
set of IGB files for (post-mortem) analysis.

There are several files associated with the status dumps. Two sets of dump files are written alternatingly,
so that there will always be a complete set even if the program is interrupted while writing a dump. After
successful completion of a dump, the other dump is deleted. A single pointer file indicates which of the two
dumps is the most recently completed. Each dump consists of a small master file, written by the master
thread, and several part files, each written by its own thread. The master file describes how many part files
there are and what each of them contains.

The save function was parallelized, because it runs several times during a simulation and can take 10-20
minutes to do its work in serial mode, due to the large amount of data to be compressed by a single thread,
and to the transport of data from remote memory. To facilitate parallel work, each thread dumps to its own
file. The load function is parallelized as well. The number of threads may be different in the writing and
reading runs.

The following program parameters (global variables) influence the code in this document.

o p_interrupted determines if the program should start from a status dump file; it is used here indirectly to
set the required argument to load_status

o status_dump_interval determines the frequency of dumps; it is used by the main program
e fich_var_w determines the name of the dump files

e Either fich_var_w or boostfile is passed to load_status in the dump_name argument

o fich_var_ext gives the filename extension for the dump files

e compress_status_files determines the compression level for the dump files.

(status.h 1) =
|//$1d: status.web,v 4.67,2008/12/15,01:48:41 potse Exp,$ |

(Preprocessor definitions)
void save_status(double stime, float ecoule_o);
int load_status(char xdump_name,double xstime, float xt_ecoule,int required);

2. Zlib functions are used to compress and decompress the dump files.

(status.c 2) =
’//$Id:|_,status .web,v,4.67,2008/12/15,,01:48:41 potse Exp_$ ‘

(Preprocessor definitions)
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <time.h> /* time, difftime */
#include <errno.h>
#include <zlib.h> /x gzopen, gzwrite, documentation of z1ib x/
#include "propag.h"

(local declarations 3)

static int Ndumps = 0; /* shared between the two functions */
char xl_ext = A; /* file extension of lastly loaded dump =/
(private functions 5)

(implementation of save_status() 4)
(implementation of load_status() 14)

2 FILE FORMAT STATUS 4.67 — December 23, 2008 83

3. File format. The documentation of the file format consists only of the implementation here, and we
take no care to keep it standardized. The format has changed often, and may change again. To reduce the
probability of errors, all small fixed-size things are stored in a struct that is written and loaded at once,
in/from the master file. Variable-size arrays are implemented separately.

(local declarations 3) =
typedef struct master_info {

int Nverts; /* nr of vertices (Nverts in propag) =/

int Nnodes; /* nr of nodes (Nnodes in propag) =/

double stime; /* simulated time (simtime in propag) */

int compteur; /* step counter (compteur in propag) */

int temps; /* lap counter (temps in propag) */

int stade; /* depolarization/repolarization (stade in propag) */
float ecoule; /* wallclock time passed (ecoule_o in propag) x/
int Ndumps; /* nr of dumps already made */

int Nparts; /* nr of parts (= nr of threads in writing run) */
int domi; /* mono/bi/tridomain (domi in propag) x/

int ve_valid; /* true if computation of Vex completed =/

} master_info;

This code is used in section 2.

84 STATUS 4.67 — December 23, 2008 WRITING 3

4. Writing. The function first writes a “master output file” containing some scalars, including the
number of “part files.” Then, in parallel mode, each thread writes a part. If anything fails, the whole dump
will be removed and the function returns. This may save the day if the filesystem is nearly full. If the dump
succeeded, the pointer file is updated. Finally, if that succeeded too, the previous dump is removed.

The Ndumps variable counts the number of dump attempts and is used to implement alternation between
two dump areas. We choose to update it also after a failed attempt. This will cause the next attempt to
destroy the only remaining dump. Thus we take the risk of having no valid dump, rather than leaving an old
dump around. If the dump failed because of a full disk, overwriting the previous dump may still succeed.

(implementation of save_status() 4) =
void save_status(double stime, float ecoule_o)

{

FILE xfm; /+ Master output file; either fm or zm is used x/

gzFile zm;

int full = 0; /* flag x/

int cmpr = compress_status_files; /* compression level (parameter) */
char xpfr = fich_var_w; /* output file prefix (program parameter) =/
char xfn_ext; /* output file extension */

static char fn_pointer[256], fn_master[256], fn_prefiz[256];

logline ("DUMP", "save_status_ $Revision: 4.67,$");

if (empr =0) fon_ext = fich-var_ext[0];

else fn_ext = fich-var_ext[1];

if (—lext) lext = strdup(fn_ext);

snprintf (fn_pointer, 256, "%s/%s.ptr", dirname, pft);

snprintf (fn_master, 256, "%s/%hshd%s" , dirname, pfx, Ndumps % 2, fn_ext);

snprintf (fn_prefiz, 256, "%s/%hshd", dirname, pfr, Ndumps % 2); /x for parts */
logline ("DUMP", "saving, status,in, ‘%s’, compression level %d", fn_master, cmpr);
if (open_file(&fm, &zm, fn_master, cmpr)) full = 1;

(write header 8)

(write master info 9)

close_file(fm, zm, cmpr);

if (—full) (write part files 10)

if (full) {
Waming(l, "cannot_write,statusyin,’%s’; deleting it. Disk full?" ,fn,master);
remove_dump (fn_prefix, fn_ext); /* remove this one x/

}

else {

(write pointer file; return if it fails 12)
snprintf (fn_prefiz, 256, "%s%hd", pfr, (Ndumps + 1) % 2);
remove_dump (fn_prefiz, l_ext); /* remove the other */

}

Ndumps ++;

}

This code is used in section 2.

4 WRITING STATUS 4.67 — December 23, 2008 85

5. The ¢mpr argument indicates the compression method/level to be used for status dumps. Zero means no
compression; a value between 1 and 9 (inclusive) means using gzip with compression level empr. Other meth-
ods can be added. For all values from 1 to 9, we use the zlib interface (documented in /usr/include/zlib.h
on most systems). Given a value 0 for the compression level, the zlib functions will create an uncompressed
file, but with a gzip header; the gzip format includes a non-compression. Since it may be confusing to have
files with .gz extension but no compression around, we handle the case of cmpr = 0 with ordinary stream
output.

We use zlib rather than opening a pipe to gzip because a status dump may be triggered by a signal, e.g.
SIGTERM, and we have no control over signal handling in gzip, which means in practice that it terminates
if it receives the signal. Termination on SIGTERM is quite common when working with a queuing system like
PBS, which may send such signals when a job runs too long or uses too much memory.

(private functions 5) =
static int open_file(FILE xxfp, gzFile xzf, char xname,int cmpr)

{
int ¢ = 0;
if (empr =0) {
if (=(xfp = fopen(name, "wb"))) {
Warning (2, "Cannotopen, file, ,<%s>", name); return 1;
}
}
else if (cmpr > 0A cmpr < 10) {
if (—(xzf = gzopen(name,"wb"))) {
Warning (2, "Cannot,gzopen, file %s: %s", name, gzerror (xzf , &c)); return 1;

}

¢ = gzsetparams (xzf , cmpr, Z_DEFAULT _STRATEGY);
if (¢#£2Z_0K) {
Warning (1, "zlibyerror: %s", gzerror (xzf , &c)); return 1;

}
}
else {

Warning (1, "unknown, ,compression ,code %d", cmpr); return 1;
}

return 0;

}

See also sections 6 and 11.

This code is used in section 2.

6. (private functions 5) +=
static int close_file(FILE xfp, gzFile zf,int cmpr)

{

int ¢;

)

¢ = felose(fp
if (o) {

Warning (1, "closing status output file failed"); return 1;

¥

}

else {
¢ = gzclose (zf);
if (c#2Z_0K) {

Warning (1, "zlibyerror: %s", gzerror(zf,&c)); return 1;
¥
}

return 0;

if (empr =0) {
)

87 STATUS 4.67 — December 23, 2008 WRITING 5

7. This macro is used for all output. We cannot use goto or jump in case of errors because it’s used in
a parallel section, so we’ll just raise the failure flag. This flag is passed as a parameter because it differs
between serial and parallel code.

##define test_write(fp, zf , failure, src, Nbytes)

if (—failure) {
if (empr =0) {
if (fwrite((src), 1, Nbytes, fp) # Nbytes) failure = 1;

else {
} if (gzwrite((zf), (src), (Nbytes)) # (Nbytes)) failure = 1;
}
}

8. The master file has a 1024-byte header. The first line of this header allows identification. It must be
changed when the format of the dump file changes incompatibly.

#define HEADER_CHARS 1024
#define ID_STRING "PROPAG status_dump version 4.3"

(write header 8) =
{

int 4;
char s[HEADER_CHARS|;
for (i = 0; i < HEADER_CHARS; i++) s[i] = ’.’;
s[HEADER_CHARS — 1] = "\n’;
sprintf (s, "%s\n", ID_STRING);
sprintf (s + strlen(s), "propag version %s\n", version());
sprintf (s + strlen(s), "Nverts =,%d\n", Nverts);
sprintf (s + strlen(s), "Nnodes =,%d\n", Nnodes);
sprintf (s + strlen(s), "tu=uhf\n", stime);
sprintf (s + strlen(s), "anatomy from_ %s\n", fich_cell);
test_write (fm, zm, full, s, HEADER_CHARS * sizeof (char));

}

This code is used in section 4.

6 WRITING STATUS 4.67 — December 23, 2008 89

9. The master information includes the number of parts and the part limits, so that the reader knows
how many files to read and how much to read from them. We also write Ndumps, so that the alternation
between the two dump areas can continue in the next run. The domi variable determines if Ver is written;
the reader will have to know this too.

The stade parameter replaces dt; it allows for an unambiguous identification of the stage, which is necessary
because for example inc_el may be different from inc_e2 while dt1 = dt2.

(write master info 9) =

{

master_info minfo;

minfo.Nverts = Nverts;

minfo.Nnodes = Nnodes;

minfo.stime = stime;

minfo.compteur = compteur;

minfo.temps = temps;

minfo.stade = stade;

minfo.ecoule = ecoule_o;

minfo.Ndumps = Ndumps + 1; /* Ndumps is not yet updated =/
minfo.Nparts = Nthreads; /* each thread (c.q. domain) writes a part */
minfo.domi = domi;

minfo.ve_valid = ve_valid;

test_write (fm, zm, full, &minfo, sizeof (minfo));

test_write (fm, zm, full, domain_begin_vertex , Nthreads sizeof (elem_t));
test_write (fm, zm, full, domain_end_vertex , Nthreads x sizeof (elem-_t));
test_write (fm, zm, full, domain_begin_node, Nthreads * sizeof (elem_t));
test_write (fm, zm, full, domain_end_node, Nthreads * sizeof (elem_t));

}

This code is used in section 4.

810 STATUS 4.67 — December 23, 2008 WRITING 7

10. The yyy array must be written in parts, because it can be larger than 2 GB and the size argument to
gzwrite() is int.

Test: make the bites quite large (rather than one cell at a time) to see if this is faster on the MP cluster.
This should help if it is the latency of the write operation that makes things slow.

(write part files 10) =

{
#pragma omp
{
long bite, ¢, n0, Nn, v0, Nv, tr = omp_get_thread_num();
char fname[200];
FILE xfp;
gzFile 2zp;
int pfail = 0; /* local failure flag, set nonzero if part fails */

snprintf (fname, 200, "%s.%04d%s", fn_prefix, (int) tr, fn_ext);
if (open_file(&fp, &zp, fname, cmpr)) pfail = 1;

n0 = domain_begin_nodetr];

Nn = domain_end_node[tr] — domain_begin_node[tr];

v0 = domain_begin_vertex [tr];

Nv = domain_end_vertez [tr] — domain_begin_vertez [tr];

test_write (fp, zp, pfail, dtime + n0, Nn « sizeof (float));
test_write (fp, zp, pfail, Vmem + v0, Nv « sizeof (vin_t));
if (domi > 1) test_write(fp, zp, pfail, Vex + v0, Nv * sizeof (vin_t));
if (mem_y) { /* yyy not allocated in forward model */
bite = 1024 « 1024;
for (¢ =0; ¢ < Nn; c+= bite) { /* must break it for gzwrite() */
if (bite > Nn — ¢) bite = Nn — ¢;
if (—pfail) test_write(fp, zp, pfail, &yyy (n0 + ¢,0), bite x nsvar * sizeof (yyy_t));
}
}
if (close_file(fp, zp, cmpr)) pfail = 1,
if (pfail)
#pragma omp
full = 1; /* communicate to master */
}

}

This code is used in section 4.

8 WRITING STATUS 4.67 — December 23, 2008 811

11. We don’t know how many parts were written last time, since it may have been done with a different
number of threads. So we just try to remove every possible part file, and don’t complain if it does not work.
It’s no use complaining about that anyway. A warning is written if removal of the master file does not
succeed for any but the first dump (Ndumps > 0).

(private functions 5) +=
static void remove_dump(char *prefiz,char xext)
{
char name[256];
int 7, ¢
snprintf (name, 256, "%shs", prefiz, ext);
logline ("DUMP" | "removing, ,0ld dump %s...", name);
¢ = remove (name);
if (¢ A Ndumps > 0) Warning (1, "cannot remove %s", name);
for (i =0; i < 1000; i++) {
snprintf (name, 256, "%s . %04d%s" , prefiz, i, ext);
remove (name); /* don’t care if it works */

}

logline ("DUMP" , "done.");

}

12. The pointer file. At the very end of save_status, and only when we believe that the dump really
succeeded completely, the prefix of the file names is updated in the pointer file. This update is the only
operation in the dumping process that should be atomic. Of course we cannot guarantee this, but we must
make it as close to atomic as possible. If the update succeeded, the function goes on to remove the other
dump. If the update failed, the function returns immediately, before removing anything.

The pointer file contains two lines: the first for the prefix, and the second for the extension. Concatenated,
these two strings form the name of the master file. The extension must be communicated in this way because
it depends on compress_status_files, which may be zero in one run and nonzero in another, leading to different
extensions. Since this affects the name of the master file, the extension has to be stored in the pointer file.

(write pointer file; return if it fails 12) =
{

FILE xfo;

int len;

if (—=(fo = fopen(fn_pointer,"wt"))) {
Warning(l, "cannotopen dump pointer file_ %s for writing" ,fn,pointer);
return;

}

len = strlen(fn_prefiz) + strien(fn_ext) + 2;

if (fprintf (fo, "%s\n%s\n", fn_prefiz, fn_ext) < len) {
Warning(l, "failed to_write,in_ dump pointer file %s" ,fn,pointer);
return;

}
if (fclose(fo)) {
Warning (1, "error_while closing dump pointer file_ %s", fn_pointer);
return; /* assume the write failed =/
}
}

This code is used in section 4.

813 STATUS 4.67 — December 23, 2008 THE POINTER FILE 9

13. Any problem in reading the file is a fatal error, except for nonexistence of the pointer file: When
this occurs, it is most probably because we are starting a new simulation and propag was running with
p_interrupted set to "auto". This warrants a special return value, to avoid scaring the user with meaningless
warnings.

The I_ext variable will contain the extension of the loaded dump. This may be different from fn_ext in
save_status. l_ext is used by save_status to remove the old dump after writing the new.

(read pointer file 13) =

{
FILE xfi;

if (=(fi = fopen(fn_pointer,"rt"))) {

if (—required) return 2;

Trouble((1, "cannot open dump pointer,file %s, for reading", fn_pointer));
}

l_ext = MALLOC(64, char,"");

if (fscanf (fi,"hs%hs", fn_prefiz, l_ext) # 2) {
Trouble((1, "failed to read, dump pointer file %s", fn_pointer));
}

felose (fi);
}

This code is used in section 14.

10 READING STATUS 4.67 — December 23, 2008 814

14. Reading. When this function is called, the anatomy has already been absorbed and using that
information, space for the status information should have been allocated. Strange things may happen when
the anatomy of the writing and reading runs does not match, but we cannot verify everything. We just check
if the crucial variables like Nbelem and Ncells agree; the user should do sensible things — or expect what
may be expected.

(implementation of load_status() 14) =
int load_status(char xdump_name,double xstime, float xt_ecoule,int required)

{

gzFile zr;
int Nparts; /* number of domains in dump */
elem_t xdf_begin_vertex, xdf_end_vertex; /* domain limits read from dump */

elem_t xdf begin_node, *df end_node;

char fn_pointer[256), fn-master[256], fn_prefiz[256];

time_t tstart;

master_info rinfo;

tstart = time(A);

logline ("SLRP", "load_status_ $Revision: 4.67,$");

snprintf (fn_pointer, 256, "%s/%s.ptr", dirname, dump_name);

logline ("SLRP", " jpointer file,: %s", fn_pointer);

(read pointer file 13) /x gets fn_prefix and lext */

snprintf (fn-master, 256, "%s%hs", fn_prefic, l_ext);

logline ("SLRP", " part prefix ,: %s", fn_prefiz);

logline ("SLRP", ", master_ file . :%s", fn_master);

(open master input file 16)

(read header 18)

(read master info 19)

{ close master input file 17) /* reports status x/

logline ("SLRP", " reading part, files...");

(read part files 20)

logline ("SLRP", " ,simulation continues at t=%.3f", rinfo.stime);
xstime = rinfo.stime; /+ modify globals and args only if succesful */
stade = rinfo.stade;

compteur = rinfo.compteur;

temps = rinfo.temps;

xt_ecoule = rinfo.ecoule;

Ndumps = rinfo.Ndumps;

ve_valid = rinfo.ve_valid;

logline ("SLRP", "load_status_took_ %.0f seconds", difftime (time(A), tstart));
return 0; /* happy =/

}

This code is used in section 2.

15. In the reader function, the required argument determines what to do in case of trouble: error exit or
just a warning and a nonzero return. In order to allow passing an undetermined number of arguments to
the Error and Warning macros, the Trouble macro takes double parentheses, as in Trouble((1, "boo")).

#define Trouble(args)

if (required) {
Error args;
}
else {
Warning args;
return 1; /* unhappy */
}
}

816 STATUS 4.67 — December 23, 2008 READING 11

16. We use the z1ib functions for reading rather than opening a pipe from gunzip, since we are using
them anyway, and it may be useful to catch SIGTERM while reading, although it is not as crucial as it is for
writing.

The gzopen function will see if the file is a gzip file or not. Mismatches in the compress_status_files
parameter will thus be corrected. The program can be started with the compress_status_files parameter set
to the desired value for the status output no matter what kind of status input is used.

(open master input file 16) =

{

int ¢ = 0;
if (compress_status_files > 0 A compress_status_files < 10) {
if (=(zr = gzopen(fn-master,"rb")))
Trouble((2, "Cannot open, file <%s>: %s\n", fn_master, gzerror (zr, &c)));

else {
Trouble ((1, "unknown, ,compression ,code"));
}

}

This code is used in section 14.

17. (close master input file 17) =

{
int c;
¢ = gzclose(zr);
if (¢ # Z_0K) Warning(1,"zlibyerror: ks", gzerror(zr,&c));

This code is used in section 14.

18. Read the header and check if the format version matches.
#tdefine test_read(fz, dest, Nbytes, name)

{

int n, ¢c=0;
n = gzread ((fz), (dest), (Nbytes));
if (n # (Nbytes)) Trouble((1, "read from j%s failed: %d of %d bytes for \"%s\"; %s",
fn_master,n, Nbytes, name, gzerror (fz, &c)));
}

(read header 18) =

{

char h[HEADER_CHARS];

test_read (zr, h, HEADER_CHARS * sizeof (char), "header");
if (strncmp (h, ID_STRING, strlen (ID_STRING)) # 0)
Trouble((1, "unrecognized, format for %s", fn_master));
}

This code is used in section 14.

12 READING STATUS 4.67 — December 23, 2008 §19

19. All information is read into local variables. Global variables of propag are only modified at the end
of load_status, when we know that the entire load succeeded, so that we don’t end up with an inconsistent
status. In case of a failure to load the status dump, the main program will clean up the Vmem and yyy
arrays if it decides to restart the simulation from scratch. The variables Nverts and Nnodes will never be
overwritten: if they are not equal to their loaded counterparts, the anatomic setup doesn’t match the status
dump so the simulation cannot continue anyway.

(read master info 19) =
{
int 7, ¢ = 0;
test_read (zr, &rinfo, sizeof (master_info), "master info");
if (rinfo.Nverts # Nverts)
Trouble((1, "Mismatch: dumped Nverts=/d, current Nverts=%d;_ %s\n", rinfo.Nverts, Nverts,
gzerror (zr, &c)));
if (rinfo.Nnodes # Nnodes)
Trouble((1, "Mismatch: dumped, Nnodes=%d, current, Nnodes=%d;_%s\n", rinfo. Nnodes, Nnodes,
gzerror (zr, &c)));
(compare domi 22)
Nparts = rinfo.Nparts;
logline ("SLRP", " %d part (s)", Nparts);
df-begin_vertex = MALLOC(Nparts, elem_t,"");
df-end_verter = MALLOC (Nparts,elem_t,"");
df_begin_node = MALLOC(Nparts, elem_t,"");
df-end_node = MALLOC(Nparts,elem_t,"");

test_read (zr, df-begin_vertex, Nparts * sizeof (elem_t), "begin_vertex");
test_read (zr, df-end_vertex , Nparts sizeof (elem_t), "end_vertex");
test_read (zr, df-begin_node, Nparts * sizeof (elem_t), "begin_node");
test_read (zr, df-end_node, Nparts * sizeof (elem_t), "end_node");
#if 0
for (i =0; i < Nparts; i++) {
logline ("SLRP", " part %dy: uverts %d ——uhduunodes %dy——u%d", (int) 4, df-begin_vertex [i],
df-end_vertex [i] — 1, df-begin_node[i], df-end_node[i] — 1);
¥
#endif
}

This code is used in section 14.

§20 STATUS 4.67 — December 23, 2008 READING 13

20. The number of parts is not necessarily equal to the number of threads in the reading process. Therefore
we do this in a parallel loop rather than a parallel section. If the number of threads is the same as in the
writing process, this is optimal. In other cases, it is at least much better than working in serial mode,
provided that the arrays have been touched previously to have them allocated on the right processor board
(on distributed-memory systems like the Altix). We use schedule(static) to preserve data locality as
much as possible; this is more important than load balance.

The yyy array must be written in parts, because it can be larger than 2 GB and the size argument to
gzread () is int.

(read part files 20) =

{
int part, trouble = 0;
#pragma omp ’paralleluforuschedule(static)uprivate(part) ‘

for (part = 0; part < Nparts; part++) {
gzFile zr;
char fname[256];
int ¢ =0, 4, bite, trb;
elem_t n0, Nn, v0, Nv;
long nb;
snprintf (fname, 256, "%s . %04d%s" , fn_prefiz, part, l_ext);
if ((zr = gzopen(fname, "rb"))) {
n0 = df-begin_node [part];
Nn = df_end_node[part] — df_begin_node[part];
v0 = df-begin_vertex [part];
Nv = df-end_vertez [part] — df-begin_vertex [part];
nb = Nn * sizeof (float);
if (gzread(zr, dtime + n0,nb) # nb) trb = 2;
nb = Nv * sizeof (vim_t);
if (gzread(zr, Vmem + v0,nb) # nb) trb = 2;
if (rinfo.domi > 1) (read or skip ve 21)
if (mem_y) { /* yyy not allocated in forward model */
bite = 1024 * 1024,
for (i=0; ¢ < Nn; i += bite) { /* must break it for gzread() */
if (bite > Nn — i) bite = Nn —i;
nb = bite * nsvar * sizeof (yyy-t);
if (gzread(zr,&yyy(n0 +i,0),nb) # nb) trb = 2;
}
}

else { /* if gzopen failed */
trb = 1;

}
#pragma omp
{

if (¢trb = 1) printf ("\nCannot open file, <%s>: %s\n", fname, gzerror (zr, &c));
trouble = trb; /* return and break not allowed in OpenMP loop */
}
#if —USE_OPENMP
if (trouble) break; /* if not parallel, stop in case of trouble */
#endif
}
if (trouble =1) Trouble((2,"Cannot open part file"));
if (trouble =2) Trouble((2, "Read, failure in part file"));

}

This code is used in section 14.

14 READING STATUS 4.67 — December 23, 2008 §21

21. It is probably OK to run bidomain and read a monodomain status dump; this is a useful method to
kickstart a bidomain simulation. Continuing a bidomain as a monodomain is less usual, but not necessarily
wrong. All is well as long as we read or skip ve when it’s present, and don’t try to read it when it isn’t there.

(read or skip ve 21) =

if (domi > 1) { /* if we want it, */
if (gzread(zr, Vex + v0,nb) # nb) trb =2, /* read it; */
}

else {
if (gzseek(zr,nb,SEEK_CUR) = —1) ¢rb = 2; /* else, skip it. */
}

}

This code is used in section 20.

22. (compare domi 22) =
{
if (domi =1 A rinfo.domi > 1) {
Warning (29, "Status,dump_is_bidomain, running monodomain. Ignored Ve.");
}
else if (domi > 1 A rinfo.domi =1) {
Warning (30, "Status,dump_is_monodomain, running bidomain.");

}
}

This code is used in section 19.

§23 STATUS 4.67 — December 23, 2008 BIBLIOGRAPHY 15
23. Bibliography.

[potse:isch] Mark Potse, Ruben Coronel, Stéphanie Falcao, A.-Robert LeBlanc, and Alain Vinet. The
effect of lesion size and tissue remodeling on ST deviation in partial-thickness ischemia. Heart Rhythm,
4(2):200-206, 2007.

[potse:bidofex] Mark Potse, Bruno Dubé, Jacques Richer, Alain Vinet, and Ramesh M. Gulrajani. A
comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in
the human heart. IEEE Trans. Biomed. Eng., 53(12):2425-2435, 2006.

[trudel:prop] Marie-Claude Trudel, Bruno Dubé, Mark Potse, Ramesh M. Gulrajani, and L. Joshua Leon.
Simulation of propagation in a membrane-based computer heart model with parallel processing. IEEE
Trans. Biomed. Eng., 51(8):1319-1329, 2004.

16 INDEX

24. Index.

args: 15.

bite: 10, 20.

boostfile: 1.

¢ 9, 6, 10, 11, 16, 17, 18, 19, 20.
close_file: 4, 6, 10.

cmpr: 4, 5, 6, 7, 10.
compress_status_files: 1, 4, 12, 16.
compteur: 3, 9, 14.

dest: 18.

df-begin_node: 14, 19, 20.
df-begin_vertex: 14, 19, 20.
df-end_node: 14, 19, 20.
df-end_vertex: 14, 19, 20.
difftime: 2, 14.

dirname: 4, 14.
domain_begin_node: 9, 10.
domain_begin_vertex: 9, 10.
domain_end_node: 9, 10.
domain_end_vertex: 9, 10.
domi: 3,9, 10, 20, 21, 22.
dt: 9.

dtime: 10, 20.

dtl: 9.

dt2: 9.

dump_name: 1, 14.
ecoule: 3, 9, 14.

ecoule_o: 1, 3, 4, 9.
Error: 15.

ext: 11.

failure: 7.

felose: 6, 12, 13.

fi: 13.

fich_cell: 8.

fich_var_ext: 1, 4.
fichovar_w: 1, 4.

fm: 4, 8, 9.

fn_ext: 4, 10, 12, 13.
fn_master: 4, 14, 16, 18.
fn_pointer: 4, 12, 13, 14.
fn_prefix: 4, 10, 12, 13, 14, 20.
fname: 10, 20.

fo: 12.

fopen: 5, 12, 13.

fr: 5, 6, 7, 10.

forintf: 12.

fscanf: 13.

full: 4, 8, 9, 10.

fwrite: 7.

fzr 18.

gzclose: 6, 17.

gzerror: 5, 6, 16, 17, 18, 19, 20.
gzopen: 2, 5, 16, 20.
gzread: 18, 20, 21.

gzseek: 21.

gzsetparams: 5.

STATUS 4.67 — December 23, 2008

gzwrite: 2, 7, 10.

h: 18.

HEADER_CHARS: 8§, 18.
i 8, 11, 19, 20.
ID_STRING: 8, 18.
mnc_el: 9.

mce_e2: 9.

lext: 2,4, 13, 14, 20.
len: 12.

load_status: 1, 14, 19.
logline: 4, 11, 14, 19.
MALLOC: 13, 19.
master_info: 3, 9, 14, 19.
mem-y: 10, 20.

minfo: 9.

n: 18.

name: 5, 11, 18.

nb: 20, 21.

Nbelem: 14.

Nbytes: 7, 18.

Necells: 14.

Ndumps: 2, 3, 4, 9, 11, 14.
Nn: 10, 20.

Nnodes: 3, 8, 9, 19.
Nparts: 3, 9, 14, 19, 20.
nsvar: 10, 20.
Nthreads: 9.

Nv: 10, 20.

Nverts: 3, 8, 9, 19.

n0: 10, 20.

omp: 10, 20.
omp_get_thread_num: 10.
open_file: 4, 5, 10.
p_interrupted: 1, 13.
part: 20.

pfail: 10.

pfr: 4.

prefir: 11.

printf: 20.

remove: 11.
remove_dump: 4, 11.
required: 1, 13, 14, 15.
rinfo: 14, 19, 20, 22.

s 8.

save_status: 1, 4, 12, 13.
SEEK_CUR: 21.

SIGTERM: 5, 16.
simtime: 3.

snprintf: 4, 10, 11, 14, 20.
sprintf: 8.

src: 7.

stade: 3, 9, 14.
status_dump_interval: 1.
stime: 1, 3, 4, 8, 9, 14.
strdup: 4.

§24

624 STATUS 4.67 — December 23, 2008

strlen: 8, 12, 18.
strnemp: 18.

t_ecoule: 1, 14.
temps: 3, 9, 14.
test_read: 18, 19.
test_write: 7, 8, 9, 10.
time: 2, 14.

tr: 10.

trb: 20, 21.

trouble: 20.

Trouble: 13, 15, 16, 18, 19, 20.
tstart: 14.
USE_OPENMP: 20.

ve: 21.

ve_valid: 3, 9, 14.
version: 8.

Vex: 3,9, 10, 21.
Vmem: 10, 19, 20.
v0: 10, 20, 21.

Warning: 4, 5, 6, 11, 12, 15, 17, 22.

yyy: 10, 19, 20.
Z_DEFAULT_STRATEGY: 5.
Z_0K: 5, 6, 17.

zf+ 5, 6, 7.
zm: 4, 8, 9.
zp: 10.

zri 14, 16, 17, 18, 19, 20, 21.

INDEX

17

18 NAMES OF THE SECTIONS

close master input file 17) Used in section 14.
compare domi 22) Used in section 19.
implementation of load_status() 14) Used in section 2.
implementation of save_status() 4) Used in section 2.
local declarations 3) Used in section 2.

open master input file 16) Used in section 14.

private functions 5, 6, 11) Used in section 2.

read header 18) Used in section 14.

read master info 19) Used in section 14.

read or skip ve 21) Used in section 20.

read part files 20) Used in section 14.

read pointer file 13) Used in section 14.

status.c 2)

status.h 1)

write header 8) Used in section 4.

write master info 9) Used in section 4.

write part files 10) Used in section 4.

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

write pointer file; return if it fails 12) Used in section 4.

STATUS 4.67 — December 23, 2008

